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Q. So, Has this program been completely tested?

Unseen Behavior

       A. No



The Fundamental Problem of  
Software Testing 

“It is always incomplete.”

[ ]

i.e.,based on  
program executions



The Fundamental Problem of  
Software Testing 

“There is always unseen.”

[ ]



In this talk,

“How secure is this program?”

Given only the current status/result of the software testing, we want to know

Coverage
Program

Bugs



Let’s think about

Q. What kind of questions would help us to know  
how much the program has been tested with software testing?

Coverage
Program

Bugs
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How much of the behavior have we 

tested/missed in this program?

What is the probability of observing 

a new coverage or a new bug?

How many unobserved 

vulnerabilities are remaining?

What is the maximum coverage  

we can achieve?

Should we keep running  

the testing/fuzzing?

How much more can I achieve  

if I spend  more time here?X

??

Questions about  
the unseen

*Red     : semantic meaning 

*Black : concrete task



How can we answer questions about the unseen?
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 Statistics!



def f(x0, x1) { 

  if (x0 + 5*x1 - 9 < 0) return; 

  if (x0 + x1 -5 > 0) return; 

  if (-x0 + 3x1 - 7 > 0) return; 

  if (x0 > 0) return; 

  assert False 

} 

f(input() % 5, input() % 5)
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* Rarely observed coverage
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Unseen execution
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Software Testing
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What is the probability of observing 

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the  

statistical estimator can 

measure the  

unseen in software testing.

How much more can I achieve 

if I spend  more time here?X



Present  

advanced extensions 

to adopt  

statistical methods  

for more  

realistic testing 

scenarios.
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a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the  

statistical estimator can 

measure the  

unseen in software testing.

How much more can I achieve 

if I spend  more time here?X



Hands-on-exercise 
with 

Fuzzing Book



0. Preparation
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To the notebook.



What is the probability of observing 

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the  

statistical estimator can 

measure the  

unseen in software testing.

How much more can I achieve 

if I spend  more time here?X



Missing Mass

What is the probability of observing a new coverage or a new bug?

a new color ball?
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M̂0 =
Φ1

n
The estimation of the probability of our following sample is something that has 

never been seen before.

Good-Turing estimator

Solution:

# of *singleton colors

colors only seen 
once in samples

# of samples

Alan Turing



To the notebook.
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    ⇔ the probability of our next sample being a new color.
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M̂0 =
Φ1

n
Good-Turing estimator

is able to estimate 

    the missing mass.

    ⇔ the probability of our next sample being a new color.

    ⇔ the probability of the next input generating a new coverage.

372
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M̂0 =
Φ1

n

How can the Good-Turing estimator estimate missing mass?

# of *singleton colors

colors only seen 
once in samples

# of samples

What it implies: "The probability of seeing an unseen event in the next sample is close to the 

probability of seeing a singleton event.”

Loose explanation: "Because if we observe the unseen event, it becomes the singleton event.”



A little bit more mathematics… 

• Let’s say there is an urn filled with colored balls. 

• The probability of picking the ball of color  = ,   

• Let’s say we picked  balls from the urn. 

• [# of Singleton] number of colors with only one ball in the sample 

 

• [Missing Mass] The probability of observing one of the unseens 

 

• When  is sufficiently large, . Therefore, 

i pi p1 + p2⋯ + pS = 1

n

Φ1 =

S

∑
i=1

{1 if there's one ball with color i

0 otherwise
⇒on average

S

∑
i=1

(
n

1) pi(1 − pi)
n−1

S

∑
i=1

{pi if color i is unobserved

0 otherwise
⇒on average

S

∑
i=1

pi(1 − pi)
n

n (1 − pi)
n−1 ≈ (1 − pi)

n

𝔼 [M0] ≈
𝔼[Φ1]

n
⇒

Φ1

n
 as an estimator for the missing mass M0 .

Grounded Mathematical Proof

Illustration by Quartl; CC-BY-SA 3.0



Estimating Residual Risk in Greybox Fuzzing
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ABSTRACT

For any errorless fuzzing campaign, no matter how long, there is

always some residual risk that a software error would be discovered

if only the campaign was run for just a bit longer. Recently, greybox

fuzzing tools have foundwidespread adoption. Yet, practitioners can

only guess when the residual risk of a greybox fuzzing campaign

falls below a speci!c, maximum allowable threshold.

In this paper, we explain why residual risk cannot be directly

estimated for greybox campaigns, argue that the discovery proba-

bility (i.e., the probability that the next generated input increases

code coverage) provides an excellent upper bound, and explore

sound statistical methods to estimate the discovery probability in

an ongoing greybox campaign. We !nd that estimators for blackbox

fuzzing systematically and substantially under-estimate the true

risk. An engineer—who stops the campaign when the estimators

purport a risk below the maximum allowable risk—is vastly misled.

She might need execute a campaign that is orders of magnitude

longer to achieve the allowable risk. Hence, the key challenge we

address in this paper is adaptive bias: The probability to discover a

speci!c error actually increases over time. We provide the !rst prob-

abilistic analysis of adaptive bias, and introduce two novel classes

of estimators that tackle adaptive bias. With our estimators, the

engineer can decide with con!dence when to abort the campaign.

CCS CONCEPTS

• Security and privacy→ Software and application security; •

Software and its engineering→ Software testing and debugging.
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Figure 1: In greybox fuzzing, the probability !bug to generate

a bug-revealing input (dashed line) increases as " increases.

The probability Δ(") that the (" + 1)-th input is coverage-

increasing (solid line) provides an upper bound on the prob-

ability (residual risk) that it is the !rst bug-revealing input.

The vertical line is when we expect the !rst bug-rev. input.

correctness of the program only for some inputs. While veri!ca-

tion provides much stronger correctness guarantees, it is greybox

fuzzing, a speci!c form of software testing, which has found wide-

spread adoption in industry [24–26].

From a fuzzing campaign that has found no bugs, can we derive

some statement about the correctness of the program? Fuzzing

being a random process, it should be possible to derive statistical

claims about the probability that the next generated input is the
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STADS: So�ware Testing as Species Discovery

Spatial and Temporal Extrapolation from Tested Program Behaviors

MARCEL BÖHME∗, National University of Singapore and Monash University, Australia

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program

behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has

currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has

been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the

coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no

vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if

the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.

In this article, I establish an unexpected connection with the otherwise unrelated scienti�c �eld of ecology,

and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species

(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists

would �rst sample a large number of individuals from that forest, determine their species, and extrapolate

from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total

number of species, (ii) of the additional sampling e�ort required to discover 10% more species, or (iii) of the

probability to discover a new species are classical problems in ecology. The STADS framework draws from

over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge

for automated test generation. Our preliminary empirical study demonstrates a good estimator performance

even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS

framework provides statistical correctness guarantees with quanti�able accuracy.

CCS Concepts: • Security and privacy→ Penetration testing; • Software and its engineering→ Soft-

• STADS: Software Testing as Species Discovery.  

Marcel Böhme. TOSEM 2018. 

• Foundational work that interprets the software testing 

process as a statistical sampling process

• Estimating residual risk in greybox fuzzing.  

Marcel Böhme, Danushka Liyanage, and 

Valentin Wüstholz. ESEC/FSE 2021 

• Apply residual risk analysis on Greybox fuzzing
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A fundamental challenge of software testing is the statistically well-grounded extrapolation from program

behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has

currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has

been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the

coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no

vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if

the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.

In this article, I establish an unexpected connection with the otherwise unrelated scienti�c �eld of ecology,

and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species

(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists

would �rst sample a large number of individuals from that forest, determine their species, and extrapolate

from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total

number of species, (ii) of the additional sampling e�ort required to discover 10% more species, or (iii) of the

probability to discover a new species are classical problems in ecology. The STADS framework draws from

over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge

for automated test generation. Our preliminary empirical study demonstrates a good estimator performance

even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS

framework provides statistical correctness guarantees with quanti�able accuracy.
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1 INTRODUCTION

The development of automated and practical approaches to vulnerability detection has never

been more important. The recent world-wide WannaCry cyber-epidemic clearly demonstrates the

vulnerability of our well-connected software systems. WannaCry exploits a software vulnerability

on Windows machines to gain root access on a huge number of computers all over the world. The
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Quantitative Reachability Analysis (QRA)

Pr(s) = ∑
e∈E

Pr(e) ⋅ 1(s is reached by e)

A program state is a property one is interested in that is either 

reached or unreached, given the program execution.
⋯
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⋯

i′￼

o′￼

¬sP

Quantitative Reachability Analysis (QRA) measures the probability of 

how likely a certain program state is reached given the workload 

of the program.

: workload or execution profileE
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Challenge: Missing Rare Program States

𝔼 ( Xs

n
Xs = 0) = 0

Problem of unseen events / � Sunrise problem

If the state  is rarely observable, i.e., ,s Pr(s) ≈ 0

If it is unobserved, the empirical probability  

underapproximates to zero probability.
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Our Solution: Structure-aware Reachability Estimator

• Approach: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=
α=2 1 ×

2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=
α=2 0.003 ×

2

10
= 0.0006.

Structure-aware:

Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =
α=2

α

1000 + 2α

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α

×
1

3
×

1

2

Laplace

1 / |childs|

1 / |childs|

By integrating light-weight structural information, the estimated becomes more grounded 

being able to distinguish the reaching probability of unreached program states.



Evaluation

RQ 2. Blackbox estimator vs. Structure-aware estimator

Program NCLOC # Func # BB GT

tcas 146 9 63 5.37E-04

schedule2 332 17 138 3.99E-04

totinfo 349 7 132 9.2E-04

printtokens2 438 19 198 7.82E-03

replace 534 21 228 2.73E-04

gif2png* 988 27 700 2.95E-04

jsoncpp 7,251 1,328 5,938 2.28E-03

jasper* 17,385 720 14,417 2.48E-04

readelf 22,347 477 18,578 1.99E-07

freetype2 44,686 1,635 27,521 8.25E-08

• Subjects: 5 Subjects from Siemens suite  

               + 5 Open-source C libraries 

• Target state: hard-to-be-covered basic block 

• Evaluation setting:

Expected number of samples needed to reach10% of  samples

1

GT



• The structure-aware estimator performed 

significantly better than the blackbox estimators.

Sample size 

vs. Bias  

Curve

log-bias < 1 means  

one order of magnitude difference

| log(GT ) − log(esti) |

Individual 

cases

Sample size Laplace Good-Turing Struct

10 % 1.28 2.41 0.91

0.01 % 3.00 4.67 1.77

lo
g

-b
ia

s
Blackbox Estimator  vs  Structure-aware Estimator

Blackbox Structure

Blackbox
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• By integrating lightweight structural information, 

statistical reaching probability estimation becomes 

more grounded, being able to distinguish the reaching 

probability of unreached program states.
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ABSTRACT

Given a target program state (or statement) ! , what is the proba-

bility that an input reaches !? This is the quantitative reachability

analysis problem. For instance, quantitative reachability analysis

can be used to approximate the reliability of a program (where !

is a bad state). Traditionally, quantitative reachability analysis is

solved as a model counting problem for a formal constraint that

represents the (approximate) reachability of ! along paths in the

program, i.e., probabilistic reachability analysis. However, in pre-

liminary experiments, we failed to run state-of-the-art probabilistic

reachability analysis on reasonably large programs.

In this paper, we explore statistical methods to estimate reach-

ability probability. An advantage of statistical reasoning is that

the size and composition of the program are insubstantial as long

as the program can be executed. We are particularly interested in

the error compared to the state-of-the-art probabilistic reachabil-

ity analysis. We realize that existing estimators do not exploit the

inherent structure of the program and develop structure-aware

estimators to further reduce the estimation error given the same

number of samples. Our empirical evaluation on previous and new

benchmark programs shows that (i) our statistical reachability anal-

ysis outperforms state-of-the-art probabilistic reachability analysis

tools in terms of accuracy, e!ciency, and scalability, and (ii) our

structure-aware estimators further outperform (blackbox) estima-

tors that do not exploit the inherent program structure. We also

identify multiple program properties that limit the applicability of

the existing probabilistic analysis techniques.
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1 INTRODUCTION

The traditional assessment of the reachability of a program state

provides only a true-false answer: either the state is reachable

(e.g., the program may crash for some input) or not (e.g., it never

crashes for any input). Due to the undecidability of the analysis

problem [16] and the restricted expressiveness of the analysis result,

such a binary answer provides only limited information. Instead

of a binary answer, quantitative reachability analysis provides the

probability of how likely a certain program state is reached given

the workload of the program. Such a quantitative measure of reach-

ability can provide more comprehensive information about the

program semantics. For instance, it can estimate how probable is

to reach a crashing state under normal workload, which can be

critical information for software reliability/security/maintenance.

The typical method considered for quantitative reachability anal-

ysis is called probabilistic reachability analysis [27], which analyt-

ically computes the reaching probability directly from the source

code. Probabilistic Symbolic Execution (PSE), the pioneering work

by Geldenhuys et al. [12], computes the reaching probability of a

program state by "nding all the path conditions to reach the state

using symbolic execution and counting the number of inputs satisfy-

ing the path conditions using model counting; the sum of the proba-

bilities becomes the exact reaching probability of the program state.

As PSE may su#er from scalability issues for a large and complex

program, many follow-up works have been proposed to improve

the scalability of probabilistic reachability analysis [11, 13]. Most

recently, Saha et al. proposed PReach which computes the reaching

probability using branch-level probability information [27].

When facing a problem too complex for the analytical method,

especially when it is unmanageable to compute a quantity exactly,

a sampling-based statistical method can be used to overcome the

limitation [4]. It is well-known that Monte Carlo methods have

been successfully applied to numerous problems across various

"elds, including natural sciences [10] and engineering [23], where

the solution is intractable for analytic computation. Recently, in

the context of program analysis, Liyanage et al. [21] proposed a

statistical method to approximate the number of elements that can

be reached by actual program execution, which, previously, can

only be upper-bounded by static analysis.

This work explores how the statistical method can be applied to

quantitative reachability analysis. We propose a statistical reach-

ability analysis, which tackles the quantitative reachability analy-

sis problem with random sampling and statistical modeling. The

main issue of statistical reachability analysis is how to estimate

the reaching probability of a certain program state that has not

yet been observed in the sampling process. To overcome this issue,

we "rst suggest a naive approach of using two well-known esti-

mators, Laplace smoothing and Good-Turing estimator [15], that

can estimate the non-zero probability of unseen events from the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.



What is the probability of observing 

a new color ball in the next sample?
Present  

advanced extensions 

to adopt  

statistical methods  

for more  

realistic testing 

scenarios.

What is the probability of observing 

a new coverage or a new bug?

Missing Mass

Extrapolation

How much more can I achieve 

if I spend  more time here?X



Statistically Extrapolating the Fuzzing Campaign



Without Extrapolation
american fuzzy lop 2.44b (djpeg)

________________________________________________________________________

| run time : 0 days, 12 hrs, 0 min, 5 sec | cycles done : 53 |

| last new path : 0 days, 0 hrs, 17 min, 44 sec | current paths : 4944 |

| last uniq crash : none seen yet | uniq crashes : 0 |

. . .

12h into the campaign & 18mins since last path.

Statistically Extrapolating the Fuzzing Campaign

With Extrapolation
extrapolation edition yeah! (djpeg)

___________________________________________________________________

residual risk : 7·10^-06 | total inputs : 63.6M |

path coverage : 77.6% paths covered | singletons : 447 |

discover new path : 0 hrs, 1 min, 36 sec | doubletons : 70 |

142k new inputs needed | |

last path. Only 78% of all paths?

extrapolation edition yeah! (djpeg)

___________________________________________________________________

residual risk : 8·10^-07 | total inputs : 124.8M |

path coverage : 97.9% paths covered | singletons : 95 |

discover new path : 0 hrs, 15 min, 9 sec | doubletons : 42 |

1.3M new inputs needed | |

paths. 98% of all paths that the fuzzer can cover covered.

Without Extrapolation With Extrapolation

12 hours of running, the last new path was 17 minutes ago. 

… should I stop this fuzzing?

A new path will come in 2 minutes? Let’s keep going!

1/4 hour is needed for the next path? Let’s stop!

Extrapolation gives richer information for the stopping criteria for the fuzzing campaign

VS



However, there is a hidden assumption:



Let’s say there is an urn filled with colored balls. The probability of 

picking the ball of color  = . Let’s say we picked  balls from the urn.i pi n

372

Assumption:  

“The sampling distribution does not change.”

However, there is a hidden assumption:



Seed Input

Space of Inputs

Blackbox Fuzzing: distribution is fixed



Space of Inputs

Seed Input

Greybox Fuzzing: distribution changes as time goes on



Space of Inputs

Seed Input

Greybox Fuzzing: distribution changes as time goes on

:= Adaptive bias
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Extrapolation of coverage rate  U(t + k)
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Extrapolation of coverage rate  U(t + k)

Û(t + k) = Φ̂0 1 − (1 −
Φ1

tΦ̂0 + Φ1
)

k+1

, where Φ̂0 =
t − 1

t

Φ2
1

2Φ2

Estimator for Blackbox

Blackbox

Sampling 

distribution 

is consistent

Greybox

Sampling 

distribution 

keeps change

Adaptive bias

≪

Efficiency

The estimators for the blackbox fuzzing will underestimate the performance of the greybox fuzzing.
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Extrapolating the Greybox Fuzzing Campaign

• Aim: Predict the future coverage rate of the greybox fuzzing campaign

• In other words, how can we solve the adaptive bias problem?

Microscopic View
Macroscopic View
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Extrapolating the Greybox Fuzzing Campaign

• First key insight — Microscopic view

(b)

asymptote @ 5408 paths
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The near future is 

predictable 

(relatively) accurately 

from the previous
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- New input that increases coverage is found. 

- Inputs around the new input are sampled.
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- New input that increases coverage is found. 
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- New input that increases coverage is found. 

- Inputs around the new input are sampled.

➡ Changing the focus (distribution) increases 

the chance of covering a new part of the program.

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.” — There’s a pattern!
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Û(t)

t

VS
Our  

Extrapolator
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Û(t + k)

k U(t + k)

Compare



Evaluation: Coverage Rate Prediction

freetype2 gif2png jsoncpp jasper readelf

25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125

−6

−4

−2

0

2

4

Prediction Point t0 (hrs)

L
o
g
 E

rr
o
r

Chao and Jost approach Our approach

“Our extrapolator exhibits  

at least one order of magnitude lower absolute bias 

than the existing extrapolator for 4 out of 5 subjects,  

especially for long-term prediction.”

Difference between  vs. log(U(t + k)) log(Û(t + k))
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ABSTRACT

A fuzzer can literally run forever. However, as more resources are

spent, the coverage rate continuously drops, and the utility of the

fuzzer declines. To tackle this coverage-resource tradeo", we could

introduce a policy to stop a campaign whenever the coverage rate

drops below a certain threshold value, say 10 new branches covered

per 15 minutes. During the campaign, can we predict the coverage

rate at some point in the future? If so, how well can we predict the

future coverage rate as the prediction horizon or the current cam-

paign length increases? How can we tackle the statistical challenge

of adaptive bias, which is inherent in greybox fuzzing (i.e., samples

are not independent and identically distributed)?

In this paper, we i) evaluate existing statistical techniques to

predict the coverage rate! ("0 + #) at any time "0 in the campaign

after a period of # units of time in the future and ii) develop a new

extrapolation methodology that tackles the adaptive bias. We pro-

pose to e#ciently simulate a large number of blackbox campaigns

from the collected coverage data, estimate the coverage rate for

each of these blackbox campaigns and conduct a simple regression

to extrapolate the coverage rate for the greybox campaign.

Our empirical evaluation using the Fuzztastic fuzzer benchmark

demonstrates that our extrapolation methodology exhibits at least

one order of magnitude lower error compared to the existing bench-

mark for 4 out of 5 experimental subjects we investigated. Notably,

compared to the existing extrapolation methodology, our extrapola-

tor excels in making long-term predictions, such as those extending

up to three times the length of the current campaign.
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1 INTRODUCTION

At the turn of the millennium, the late Mary-Jean Harrold drew a

research roadmap for the software testing community of the future

[13]. She highlighted the "development of techniques and tools for

use in estimating, predicting, and performing testing on evolving

software systems" as one of $ve research pointers. While there has

been some recent progress in the estimation of pertinent quantities

in the testing process, we have yet to start exploring methodologies

for prediction.

The rate at which new coverage is achieved is considered a fun-

damental measure of the e#ciency of a fuzzing campaign. A fuzzer

is an automated software testing tool, and with increasing cover-

age, we mean the generation of inputs that cover new program

elements, such as a branch or a statement. If the coverage rate drops

below a certain threshold, the tester will abort the ongoing fuzzing

campaign for the lack of progress. Terminating a fuzzing campaign

early will help release computational resources and reduce the car-

bon footprint [17, 26]. If, throughout the campaign, the tester could

accurately predict the coverage rate at some point in the future,

they could conduct a cost-bene$t analysis to assess the resources

required to achieve the targeted testing progress. Since fuzzing is a

preliminary testing technique that constitutes sophisticated testing

frameworks (e.g., a hybrid/ensemble fuzzing, an automated test

case generation framework, etc.), such a prediction would allow the

tester to adequately allocate resources (time and computing power)

for the entire testing process in advance [29].

One of the most successful fuzzing techniques is called greybox

fuzzing, which takes a mutation-based, coverage-guided approach.

A greybox fuzzer is mutation-based because it uses a corpus of pro-

gram inputs that are randomly mutated to slightly corrupt the seed

$le while preserving much of the unknown but required input for-

mat. A greybox fuzzer is coverage-guided because it adds generated

inputs to the corpus that have been observed to increase coverage.

The hope is that an input generated from a coverage-increasing

input is itself more likely coverage-increasing. Since the probability

of covering a speci$c program element changes in this process, the

underlying distribution over these elements is not invariant. How-

ever, invariance is a key assumption in most statistical estimation

and extrapolation methodologies. Hence, a key statistical challenge

in the domain of greybox fuzzing is thus to tackle the resulting

adaptive bias.

In this paper, we introduce a novel extrapolation methodology

that allows us to predict the coverage rate! ("0 +$"0) in a greybox

campaign of length "0 if the campaign length was extended$ more

times while accounting for adaptive bias. We systematically select

This work is licensed under a Creative Commons Attribution International 4.0 License.

• Extrapolating Coverage Rate in Greybox Fuzzing  

Danushka Liyanage*, Seongmin Lee*, Chakkrit 

Tantithamthavorn, and Marcel Böhme. ICSE 2024. 

• Extrapolate the future progress of the greybox fuzzing by 

handling the adaptive bias through introducing a 

regression model over predictions on subcampaigns.
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• Approach: refiect the (control) dependence relation between the program states.
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