
25.04.28 | SBFT’25

Magic of Statistics for Software Testing:
How to Foresee the Unseen

Seongmin Lee

Max Planck Institute for Security and Privacy (MPI-SP)

FOR SECURITY AND PRIVACY

MAX PLANCK INSTITUTE

Software Testing — Test by Actual Running

Software Testing — Test by Actual Running

Program

Vulnerability

For example, a Fuzzing,

Software Testing — Test by Actual Running

Program

Vulnerability

For example, a Fuzzing,

Fuzzer
(Input generator)

Software Testing — Test by Actual Running

Inputs

Program

Vulnerability

For example, a Fuzzing,

Fuzzer
(Input generator)

Software Testing — Test by Actual Running

Inputs

Program

Vulnerability

For example, a Fuzzing,

Fuzzer
(Input generator)

Software Testing — Test by Actual Running

Inputs Crash!

Program

Vulnerability

For example, a Fuzzing,

Fuzzer
(Input generator)

As a fuzzing campaign progresses,

Program

Coverage Increase
(lines or basic blocks)

As a fuzzing campaign progresses,

Program

Crashes / AnomaliesCoverage Increase
(lines or basic blocks)

As a fuzzing campaign progresses,

Program

Crashes / AnomaliesCoverage Increase
(lines or basic blocks)

Q. So, Has this program been completely tested?

Program

Crashes / AnomaliesCoverage Increase
(lines or basic blocks)

Q. So, Has this program been completely tested?

Program

 A. No

Crashes / AnomaliesCoverage Increase
(lines or basic blocks)

Q. So, Has this program been completely tested?

Unseen Behavior

 A. No

The Fundamental Problem of
Software Testing

“It is always incomplete.”

[]

i.e.,based on
program executions

The Fundamental Problem of
Software Testing

“There is always unseen.”

[]

In this talk,

“How secure is this program?”

Given only the current status/result of the software testing, we want to know

Coverage
Program

Bugs

Let’s think about

Q. What kind of questions would help us to know
how much the program has been tested with software testing?

Coverage
Program

Bugs

??

Questions about
the unseen

*Red : semantic meaning

*Black : concrete task

How much of the behavior have we

tested/missed in this program?

What is the probability of observing

a new coverage or a new bug?

??

Questions about
the unseen

*Red : semantic meaning

*Black : concrete task

How much of the behavior have we

tested/missed in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

??

Questions about
the unseen

*Red : semantic meaning

*Black : concrete task

How much of the behavior have we

tested/missed in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

??

Questions about
the unseen

*Red : semantic meaning

*Black : concrete task

How can we answer questions about the unseen?
�

�
How can we answer questions about the unseen?

Ecology Social Science

Free image by d_alexander33 and andibreit from pixabay

Free image by TheOtherKev and Efraimstochter from pixabay and By Calvin Teo. - Own work., CC BY-SA 3.0, https://commons.wikimedia.org /w/index.php?curid=1054067

Free image by TheOtherKev and Efraimstochter from pixabay and By Calvin Teo. - Own work., CC BY-SA 3.0, https://commons.wikimedia.org /w/index.php?curid=1054067

Free image by TheOtherKev and Efraimstochter from pixabay and By Calvin Teo. - Own work., CC BY-SA 3.0, https://commons.wikimedia.org /w/index.php?curid=1054067

 Statistics!

def f(x0, x1) {

 if (x0 + 5*x1 - 9 < 0) return;

 if (x0 + x1 -5 > 0) return;

 if (-x0 + 3x1 - 7 > 0) return;

 if (x0 > 0) return;

 assert False

}

f(input() % 5, input() % 5)

≈

(92,93,352,353,354,...)

(92,93,301,302,303,...)

(92,93,355,356,357,...)

(92,93,109,110,134,...)

(92,93,352,353,354,...)

(92,93,109,135,136,137,...)

(92,93,17,18)

(92,93,352,353,354,...)

(92,93,355,356,357,...)

(92,93,301,305,306,...)

Program

i

Input

Fuzzer

Coverage
(Line numbers)

Software Testing ⇒ Sampling Process

(92,93,352,353,354,...)

(92,93,301,302,303,...)

(92,93,355,356,357,...)

(92,93,109,110,134,...)

(92,93,352,353,354,...)

(92,93,109,135,136,137,...)

(92,93,17,18)

(92,93,352,353,354,...)

(92,93,355,356,357,...)

(92,93,301,305,306,...)

Program

i

Input

Fuzzer

Coverage
(Line numbers)

Software Testing ⇒ Sampling Process
* Abundantly observed coverage

* Abundantly observed coverage

* Rarely observed coverage

Program

i

Input

Fuzzer

(92,93,352,353,354,...)

(92,93,301,302,303,...)

(92,93,355,356,357,...)

(92,93,109,110,134,...)

(92,93,352,353,354,...)

(92,93,109,135,136,137,...)

(92,93,17,18)

(92,93,352,353,354,...)

(92,93,355,356,357,...)

(92,93,301,305,306,...)

Coverage
(Line numbers)

Software Testing ⇒ Sampling Process

372

Program

i

Input

Fuzzer

372
372

372

372

372
372

372

Colored Balls

Software Testing ⇒ Sampling Process

372

372

372
372

372

372

372
372

372

Colored BallsUrn of Balls

Illustration by Quartl; CC-BY-SA 3.0

Software Testing ⇒ Sampling Process

372

372

372
372

372

372

372
372

372

Colored BallsUrn of Balls

Unseen execution

Software Testing ⇒ Sampling Process

372

372

372
372

372

372

372
372

372

Unseen bug

Colored BallsUrn of Balls

Unseen execution

Software Testing ⇒ Sampling Process

372

372

372
372

372

372

372
372

372

Unseen bug

Residual Risk of Testing Remaining Unseen Colors≈

Unseen execution

Software Testing ⇒ Sampling Process

What is the probability of observing

a new coverage or a new bug?

What is the maximum coverage

we can achieve?

How much more can I achieve

if I spend more time here?X

??

Questions about
the unseen in
Software Testing

What is the maximum coverage

we can achieve?

How much more can I achieve

if I spend more time here?X

What is the probability of observing

a new color ball in the next sample?

372

Questions about
the unseen in an
Urn filled with Balls

How much more can I achieve

if I spend more time here?X

How many colors are remaining

 in the urn?

Questions about
the unseen in an
Urn filled with Balls

What is the probability of observing

a new color ball in the next sample?

372

How many new colors can I see more if

I sample more balls from the urn?X

Questions about
the unseen in an
Urn filled with Balls

How many colors are remaining

 in the urn?

What is the probability of observing

a new color ball in the next sample?

What is the probability of observing

a new color ball in the next sample?

372

How many new colors can I see more if

I sample more balls from the urn?X

Questions about
the unseen in an
Urn filled with Balls

How many colors are remaining

 in the urn?

What is the probability of observing

a new color ball in the next sample?

What is the probability of observing

a new color ball in the next sample?

372

 Statistics!

How many new colors can I see more if

I sample more balls from the urn?X

Statistical notion of
the unseen in an
Urn filled with Balls

How many colors are remaining

 in the urn?

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

What is the probability of observing

a new color ball in the next sample?

How many new colors can I see more if

I sample more balls from the urn?X

Statistical notion of
the unseen in an
Urn filled with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

What is the probability of observing

a new color ball in the next sample?

Species Richness

How many colors are remaining

 in the urn?

Statistical notion of
the unseen in an
Urn filled with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

What is the probability of observing

a new color ball in the next sample?

Species Richness

How many colors are remaining

 in the urn?

Extrapolation

How many new colors can I see more if

I sample more balls from the urn?X

Estimators about
the unseen in an
Urn filled with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness

How many colors are remaining

 in the urn?

Extrapolation

How many new colors can I see more if

I sample more balls from the urn?X

Φ1

n

Estimators about
the unseen in an
Urn filled with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

How many new colors can I see more if

I sample more balls from the urn?X

Φ1

n

n − 1

n

(Φ1)
2

2Φ2

Estimators about
the unseen in an
Urn filled with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

Φ1

n

n − 1

n

(Φ1)
2

2Φ2

Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in software testing.

How much more can I achieve

if I spend more time here?X

Present

advanced extensions

to adopt

statistical methods

for more

realistic testing

scenarios.

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

How much more can I achieve

if I spend more time here?X

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in software testing.

How much more can I achieve

if I spend more time here?X

Hands-on-exercise
with

Fuzzing Book

0. Preparation

372

To the notebook.

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in software testing.

How much more can I achieve

if I spend more time here?X

Missing Mass

What is the probability of observing a new coverage or a new bug?

a new color ball?

Solution:

M̂0 =
Φ1

n
The estimation of the probability of our following sample is something that has

never been seen before.

Good-Turing estimator

Solution:

M̂0 =
Φ1

n
The estimation of the probability of our following sample is something that has

never been seen before.

Good-Turing estimator

Solution:

of *singleton colors

colors only seen
once in samples

of samples

M̂0 =
Φ1

n
The estimation of the probability of our following sample is something that has

never been seen before.

Good-Turing estimator

Solution:

of *singleton colors

colors only seen
once in samples

of samples

Alan Turing

To the notebook.

M̂0 =
Φ1

n
Good-Turing estimator

M̂0 =
Φ1

n
Good-Turing estimator

is able to estimate

 the missing mass.

M̂0 =
Φ1

n
Good-Turing estimator

is able to estimate

 the missing mass.

 ⇔ the probability of our next sample being a new color.

372

M̂0 =
Φ1

n
Good-Turing estimator

is able to estimate

 the missing mass.

 ⇔ the probability of our next sample being a new color.

 ⇔ the probability of the next input generating a new coverage.

372

M̂0 =
Φ1

n

How can the Good-Turing estimator estimate missing mass?

of *singleton colors

colors only seen
once in samples

of samples

M̂0 =
Φ1

n

How can the Good-Turing estimator estimate missing mass?

of *singleton colors

colors only seen
once in samples

of samples

What it implies: "The probability of seeing an unseen event in the next sample is close to the

probability of seeing a singleton event.”

M̂0 =
Φ1

n

How can the Good-Turing estimator estimate missing mass?

of *singleton colors

colors only seen
once in samples

of samples

What it implies: "The probability of seeing an unseen event in the next sample is close to the

probability of seeing a singleton event.”

Loose explanation: "Because if we observe the unseen event, it becomes the singleton event.”

A little bit more mathematics…

• Let’s say there is an urn filled with colored balls.

• The probability of picking the ball of color = ,

• Let’s say we picked balls from the urn.

• [# of Singleton] number of colors with only one ball in the sample

• [Missing Mass] The probability of observing one of the unseens

• When is sufficiently large, . Therefore,

i pi p1 + p2⋯ + pS = 1

n

Φ1 =

S

∑
i=1

{1 if there's one ball with color i

0 otherwise
⇒on average

S

∑
i=1

(
n

1) pi(1 − pi)
n−1

S

∑
i=1

{pi if color i is unobserved

0 otherwise
⇒on average

S

∑
i=1

pi(1 − pi)
n

n (1 − pi)
n−1 ≈ (1 − pi)

n

𝔼 [M0] ≈
𝔼[Φ1]

n
⇒

Φ1

n
 as an estimator for the missing mass M0 .

Grounded Mathematical Proof

Illustration by Quartl; CC-BY-SA 3.0

Estimating Residual Risk in Greybox Fuzzing

Marcel Böhme
Monash University, Australia

MPI-SP, Germany

Danushka Liyanage
Monash University

Australia

Valentin Wüstholz
ConsenSys

Germany

ABSTRACT

For any errorless fuzzing campaign, no matter how long, there is

always some residual risk that a software error would be discovered

if only the campaign was run for just a bit longer. Recently, greybox

fuzzing tools have foundwidespread adoption. Yet, practitioners can

only guess when the residual risk of a greybox fuzzing campaign

falls below a speci!c, maximum allowable threshold.

In this paper, we explain why residual risk cannot be directly

estimated for greybox campaigns, argue that the discovery proba-

bility (i.e., the probability that the next generated input increases

code coverage) provides an excellent upper bound, and explore

sound statistical methods to estimate the discovery probability in

an ongoing greybox campaign. We !nd that estimators for blackbox

fuzzing systematically and substantially under-estimate the true

risk. An engineer—who stops the campaign when the estimators

purport a risk below the maximum allowable risk—is vastly misled.

She might need execute a campaign that is orders of magnitude

longer to achieve the allowable risk. Hence, the key challenge we

address in this paper is adaptive bias: The probability to discover a

speci!c error actually increases over time. We provide the !rst prob-

abilistic analysis of adaptive bias, and introduce two novel classes

of estimators that tackle adaptive bias. With our estimators, the

engineer can decide with con!dence when to abort the campaign.

CCS CONCEPTS

• Security and privacy→ Software and application security; •

Software and its engineering→ Software testing and debugging.

●●●
●

●

●

●●
●●

●

●

●●
●

●

●

●

●●
●●

●
●●

●

●

●●●●

●

●
●●

●

●●
●●●●●

●

●●
●●

●

●
●●

●

●●●●●●●●

●●

●
●●

●

●

●●●

●

●

●●

●
●●

●●
●

●

●
●

●●

●

●●●

●●

●

●
●

●●●

●
●●

●●●

●●

●●●●

●

●
●

●●●●●●●●●

●

●●

●

●

●

●●●

●
●

●

●

●●●●
●

●●

●●●●●●

●

●
●●

●●

●

●●

●●

●
●●●●●●●

●

●●●●

●

●

●●●●●●●●●

●

●

●

●

●

●
●●

●

●
●●

●●●●

●●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●
●●●●

●

●●
●●

●●
●

●●
●

●

●

●●●●●●●●●

●

●

●

●

●

●

●
●

●●
●●

●●●
●

●
●●●

●
●●●

●

●●●●
●

●

●●

●

●
●

●

●

●●●
●

●●●

●●●●●
●

●●●●●●●●●●

●

●

●
●●●●●●●

●

●

●●●
●

●●

●
●●

●●●
●●

●●●
●●

●

●

●

●●

●

●
●

●
●

●●
●

●●
●

●

●

●●

●

●
●

●●●●●●●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●●

●

●●
●

●
●●

●

●

●
●●

●
●●●●●

●

●●

●

●

●

●●●●●●●●●

●●●
●

●●

●●
●

●●●
●

●

●

●●
●●

●●

●

●

●

●
●●

●●●

●

●
●

●●
●

●

●●

●●

●
●

●
●

●●●●
●

●●●

●●●●●●●●

●●●●●●●
●●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●●
●●

●

●●

●

●

●

●

●

●●

●
●●

●●●●●●●●
●

●

●●●●●●●●

●

●●

●●
●●●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●
●

●●●

●

●
●

●
●

●●

●
●

●
●

●●

●

●

●●●●●●●●

●

●●

●●

●
●

●●●●

●
●●

●●

●

●

●

●
●●●

●

●
●●

●
●

●
●●

●

●

●

●
●●●

●●
●●

●

●
●

●●
●

●●
●

●

●●●●●●●●

●●●●
●●●●●●

●

●

●

●●●

●

●●●
●●

●
●●

●●

●

●

●

●
●

●●
●

●
●

●●
●●●●●

●
●●●

●
●

●●●●●●●●●●●

●

●

●●
●

●

●●●

●

●●
●●

●

●

●

●

●●

●

●●

●

●●
●

●●●●

●

●

●
●●●●●●●●

●

●

●

●
●

●
●●

●
●

●●●●●●●●●

●●●
●

●

●●

●

●●●●

●

●●●

●●
●●

●
●

●●

●
●●

●
●

●
●

●

●
●●

●
●

●
●

●

●

●

●●
●●●

●●
●

●

●●●●●●●●●●

●

●

●●
●

●
●●

●
●

●

●
●●●

●
●●

●

●
●

●
●●●

●

●
●

●
●

●●●

●

●●●●
●

●
●

●

●
●

●

●
●

●●●

●

●●●●●●●●●●

●●

●

●●●

●

●●
●

●

●●

●

●●●

●

●

●
●●

●●

●
●

●●

●

●

●

●

●
●●

●
●

●

●

●●
●●

●
●●●

●

●●

●
●

●●●●●●●●●

●●

●

●

●

●●●●

●●

●

●

●
●●

●

●

●

●
●●●●

●●

●●●●

●
●

●
●

●
●

●

●

●●
●●

●

●
●

●●●
●●●

●●●
●●

●●●●●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●●●●
●

●●

●

●

●

●●

●
●●

●●●

●

●

●
●

●

●

●

●
●

●●
●●

●
●

●
●

●

●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●●
●

●●
●

●

●

●●
●

●
●●

●
●

●●●●●

●●●

●

●●●●●●●●●●

●

●●

●●
●●

●●
●●●

●

●

●
●

●●
●

●
●

●

●●●

●

●
●

●

●
●

●
●

●●
●●●●

●●●

●

●

●●●●●

●
●

●
●

●●●●●●●●

●●●
●●●

●●●

●

●

●
●●

●
●

●
●

●●

●●●
●

●

●

●●

●

●●
●●●

●●●

●●●●●●●
●●●●●

●●
●

●●

●●●●●●●

●●

●

●
●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●●●
●●●

●

●
●

●

●

●

●

●●
●●●

●
●

●●●●
●●

●

●

●

●●●●●●●●

●●●●

●●●
●●●●

●
●●●

●●

●

●

●

●

●●
●

●
●

●
●●●

●

●

●
●

●

●

●

●
●●●

●
●

●

●●
●●

●

●●
●

●

●●●●●●●●

●●●●
●●

●
●

●

●●●●●

●●●

●

●

●
●

●●●

●

●
●

●●

●
●

●

●
●

●●●●

●
●

●

●●

●
●

●●●●
●

●●

●

●●●●●●●●

●

●

●

●

●●●

●

●
●●●

●
●

●

●
●

●
●

●
●●

●

●●
●

●

●

●

●●
●

●

●

●
●

●
●

●
●●

●●
●

●●●●

●

●●●●●●●●●●●●

●●●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●●
●●●

●

●

●
●●●

●

●

●
●●

●●

●

●

●
●

●
●

●●

●

●

●
●●

●●●

●●●●●●●●●●

●●●●
●●●

●●●

●

●
●●

●

●

●
●●●●●●

●●●●

●●●
●

●

●

●●

●

●
●

●●
●

●
●

●
●

●
●●

●●
●

●

●●●●●●●●●

●

●●

●●

●
●

●
●

●
●●●

●
●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●
●

●

●●
●●

●
●●

●
●●●●●

●●
●

●
●●

●●●●●●●●●

●

●

●
●

●
●

●

●●

●●

●●

●

●
●

●
●

●

●
●●●

●

●
●

●

●
●●

●

●●
●

●

●

●
●

●●●
●

●●●

●

●
●

●●
●

●●

●●●●●●●●

●

●

●
●●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●●●●

●

●
●

●

●
●

●
●●●

●

●●
●

●
●

●

●

●

●●●●●●●●

Greybox

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of generated test inputs (n)

P
ro

b
a

b
ili

ty

factor ● Discovery probability Bug Probability

Figure 1: In greybox fuzzing, the probability !bug to generate

a bug-revealing input (dashed line) increases as " increases.

The probability Δ(") that the (" + 1)-th input is coverage-

increasing (solid line) provides an upper bound on the prob-

ability (residual risk) that it is the !rst bug-revealing input.

The vertical line is when we expect the !rst bug-rev. input.

correctness of the program only for some inputs. While veri!ca-

tion provides much stronger correctness guarantees, it is greybox

fuzzing, a speci!c form of software testing, which has found wide-

spread adoption in industry [24–26].

From a fuzzing campaign that has found no bugs, can we derive

some statement about the correctness of the program? Fuzzing

being a random process, it should be possible to derive statistical

claims about the probability that the next generated input is the

0

STADS: So�ware Testing as Species Discovery

Spatial and Temporal Extrapolation from Tested Program Behaviors

MARCEL BÖHME∗, National University of Singapore and Monash University, Australia

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program

behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has

currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has

been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the

coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no

vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if

the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.

In this article, I establish an unexpected connection with the otherwise unrelated scienti�c �eld of ecology,

and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species

(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists

would �rst sample a large number of individuals from that forest, determine their species, and extrapolate

from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total

number of species, (ii) of the additional sampling e�ort required to discover 10% more species, or (iii) of the

probability to discover a new species are classical problems in ecology. The STADS framework draws from

over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge

for automated test generation. Our preliminary empirical study demonstrates a good estimator performance

even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS

framework provides statistical correctness guarantees with quanti�able accuracy.

CCS Concepts: • Security and privacy→ Penetration testing; • Software and its engineering→ Soft-

• STADS: Software Testing as Species Discovery.

Marcel Böhme. TOSEM 2018.

• Foundational work that interprets the software testing

process as a statistical sampling process

• Estimating residual risk in greybox fuzzing.

Marcel Böhme, Danushka Liyanage, and

Valentin Wüstholz. ESEC/FSE 2021

• Apply residual risk analysis on Greybox fuzzing

How much more can I achieve

if I spend more time here?X

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in software testing.

Extrapolation

How much more coverage can I get if I fuzz the program with X more inputs?

How many more colors

: the number of new discoveries when more samples are retrievedΔ(m) m

: the number of new discoveries when more samples are retrievedΔ(m) m

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Δ̂(m) = Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

: the number of singletons

: the number of doubletons

Φ1

Φ2

Δ̂(m) = Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

: the number of new discoveries when more samples are retrievedΔ(m) m

n − 1

n

(Φ1)
2

2Φ2

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

 : the estimated number

of remaining unseen

Φ̂0

: the number of singletons

: the number of doubletons

Φ1

Φ2

: the number of new discoveries when more samples are retrievedΔ(m) m

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Δ̂(m)

= Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

: the number of singletons

: the number of doubletons

Φ1

Φ2

: the number of new discoveries when more samples are retrievedΔ(m) m

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Δ̂(m)

= Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

m

: the number of singletons

: the number of doubletons

Φ1

Φ2

: the number of new discoveries when more samples are retrievedΔ(m) m

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Δ̂(m)

= Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

Φ̂0

m

: the number of singletons

: the number of doubletons

Φ1

Φ2

: the number of new discoveries when more samples are retrievedΔ(m) m

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Δ̂(m)

= Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

Φ̂0

Exponentially decaying

m

: the number of singletons

: the number of doubletons

Φ1

Φ2

To the notebook.

Extrapolator Δ̂(m) = Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

Extrapolator

It is able to

 extrapolate how many new colors we will observe more when

 we have more samples.m

372

Δ̂(m) = Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

Extrapolator

It is able to

 extrapolate how many new colors we will observe more when

 we have more samples.m

 ⇔ extrapolate the coverage increase when we run the fuzzing longer.

372

Δ̂(m) = Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

(92,93,109,135,136,137,...)

(92,93,17,18)

(92,93,352,353,354,...)

372

Each line coverage vector

Color of a ball

(92,93,109,135,136,137,...)

(92,93,17,18)

(92,93,352,353,354,...)

372

Each line coverage vector

Color of a ball

92, 93, 109, ...

Each line

(92,93,109,135,136,137,...)

(92,93,17,18)

(92,93,352,353,354,...)

372

Each line coverage vector

Color of a ball

92, 93, 109, ...

Each line

bb#1, bb#2, bb#42, ...

Each basic block

(92,93,109,135,136,137,...)

(92,93,17,18)

(92,93,352,353,354,...)

372

Each line coverage vector

Color of a ball

92, 93, 109, ...

Each line

bb#1, bb#2, bb#42, ...

Each basic block

,

,

...

⟨s@12 = T ∧ s@3 = F⟩

⟨s@12 = F ∧ s@3 = F⟩

Each program state

0

STADS: So�ware Testing as Species Discovery

Spatial and Temporal Extrapolation from Tested Program Behaviors

MARCEL BÖHME∗, National University of Singapore and Monash University, Australia

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program

behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has

currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has

been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the

coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no

vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if

the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.

In this article, I establish an unexpected connection with the otherwise unrelated scienti�c �eld of ecology,

and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species

(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists

would �rst sample a large number of individuals from that forest, determine their species, and extrapolate

from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total

number of species, (ii) of the additional sampling e�ort required to discover 10% more species, or (iii) of the

probability to discover a new species are classical problems in ecology. The STADS framework draws from

over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge

for automated test generation. Our preliminary empirical study demonstrates a good estimator performance

even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS

framework provides statistical correctness guarantees with quanti�able accuracy.

CCS Concepts: • Security and privacy→ Penetration testing; • Software and its engineering→ Soft-

ware testing and debugging;

Additional Key Words and Phrases: Statistical guarantees, extrapolation, fuzzing, stopping rule, code coverage,

species coverage, discovery probability, security, reliability, measure of con�dence, measure of progress

ACM Reference format:

Marcel Böhme. 2018. STADS: Software Testing as Species Discovery. ACM Trans. Softw. Eng. Methodol. 0, 0,

Article 0 (April 2018), 52 pages.

https://doi.org/0000001.0000001

1 INTRODUCTION

The development of automated and practical approaches to vulnerability detection has never

been more important. The recent world-wide WannaCry cyber-epidemic clearly demonstrates the

vulnerability of our well-connected software systems. WannaCry exploits a software vulnerability

on Windows machines to gain root access on a huge number of computers all over the world. The

∗Dr. Böhme conducted this research at the National University of Singapore and has since moved to Monash University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

1049-331X/2018/4-ART0

https://doi.org/0000001.0000001

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 0. Publication date: April 2018.

• STADS: Software Testing as Species Discovery.

Marcel Böhme. TOSEM 2018.

• Foundational work that interprets the software testing

process as a statistical sampling process

Questions?

Present

advanced extensions

to adopt

statistical methods

for more

realistic testing

scenarios.

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

How much more can I achieve

if I spend more time here?X

Extrapolator

Δ̂(m) = Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

M̂0 =
Φ1

n

Good-Turing
estimator

Extrapolator

Δ̂(m) = Φ̂0 1 − (1 −
Φ1

nΦ̂0 + Φ1
)

m

M̂0 =
Φ1

n

Good-Turing
estimator

Depending on the problem one wants to solve,

the statistical estimator may not be directly applicable.

Present

advanced extensions

to adopt

statistical methods

for more

realistic testing

scenarios.

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

How much more can I achieve

if I spend more time here?X

⋯

Program

i

o

s
Program

StateP

⋯

Program

i

o

s
Program

StateP
“What is the probability of

reaching ?”s

Quantitative Reachability Analysis (QRA)

Pr(s) = ∑
e∈E

Pr(e) ⋅ 1(s is reached by e)

A program state is a property one is interested in that is either

reached or unreached, given the program execution.
⋯

Program

i

o

s
Program

StateP
⋯

i′￼

o′￼

¬sP

Quantitative Reachability Analysis (QRA) measures the probability of

how likely a certain program state is reached given the workload

of the program.

: workload or execution profileE

Statistical Reachability Analysis (SRA)
— For seen program states, —

Statistical Reachability Analysis (SRA)

⋯

P

i1, i2, i3, ⋯ in

Samples of inputs from

the operational distribution

(workload)

s

— For seen program states, —

Statistical Reachability Analysis (SRA)

O, X, O, O, X,

O, X, O, O, O,

O, X, X, X, X,

X, X, O, X, O,

X, O, X, O, …

⋯

P

i1, i2, i3, ⋯ in

Samples of inputs from

the operational distribution

(workload)

s

— For seen program states, —

Statistical Reachability Analysis (SRA)

O, X, O, O, X,

O, X, O, O, O,

O, X, X, X, X,

X, X, O, X, O,

X, O, X, O, …

̂Pr(s) =
Xs

n
⇒ Pr(s)

n → ∞

the number of O in samplesXs := n

Empirical Probability⋯

P

i1, i2, i3, ⋯ in

Samples of inputs from

the operational distribution

(workload)

s

— For seen program states, —

Challenge: Missing Rare Program States

𝔼 (Xs

n
Xs = 0) = 0

If the state is rarely observable, i.e., ,s Pr(s) ≈ 0

If it is unobserved, the empirical probability

underapproximates to zero probability.

Challenge: Missing Rare Program States

𝔼 (Xs

n
Xs = 0) = 0

Problem of unseen events / � Sunrise problem

If the state is rarely observable, i.e., ,s Pr(s) ≈ 0

If it is unobserved, the empirical probability

underapproximates to zero probability.

“Wait... don't we already know how to do that?”

“Wait... don't we already know how to do that?”

— The estimator for the probability of an unseen event happening —

Problem

Previous solutionProblem

Previous solutionProblem

≠

We want the probability of seeing THE unseen state, not AN unseen state.
(specific) (any)

Blackbox EstimatorProblem

≠

We want the probability of seeing THE unseen state, not AN unseen state.
(specific) (any)

Blackbox estimators cannot distinguish between
unseen states.

: Reached

: Unreached

Blackbox estimators cannot distinguish between
unseen states.

s1

... s2

...

 ...

 s1: if (pred)

 s2: stmt;

 ...
Control-flow

Source

;

However , given the sample .

Pr(s1) ≥ Pr(s2)

̂PrBB(s1, O) = ̂PrBB(s2, O) O

1㌱

: Reached

: Unreached

Blackbox estimators cannot distinguish between
unseen states.

s1

... s2

...

 ...

 s1: if (pred)

 s2: stmt;

 ...
Control-flow

Source

;

However , given the sample .

Pr(s1) ≥ Pr(s2)

̂PrBB(s1, O) = ̂PrBB(s2, O) O

1㌱

: Reached

: Unreached

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

2㌲

 has larger chances of being reached than s2 s4

Blackbox estimators cannot distinguish between
unseen states.

s1

... s2

...

 ...

 s1: if (pred)

 s2: stmt;

 ...
Control-flow

Source

;

However , given the sample .

Pr(s1) ≥ Pr(s2)

̂PrBB(s1, O) = ̂PrBB(s2, O) O

1㌱

: Reached

: Unreached

Unreached

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

2㌲

 has larger chances of being reached than s2 s4

Blackbox estimators cannot distinguish between
unseen states.

s1

... s2

...

 ...

 s1: if (pred)

 s2: stmt;

 ...
Control-flow

Source

;

However , given the sample .

Pr(s1) ≥ Pr(s2)

̂PrBB(s1, O) = ̂PrBB(s2, O) O

1㌱

: Reached

: Unreached

Unreached

Reached

Direct-
 predecessor

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

2㌲

 has larger chances of being reached than s2 s4

Blackbox estimators cannot distinguish between
unseen states.

s1

... s2

...

 ...

 s1: if (pred)

 s2: stmt;

 ...
Control-flow

Source

;

However , given the sample .

Pr(s1) ≥ Pr(s2)

̂PrBB(s1, O) = ̂PrBB(s2, O) O

1㌱

: Reached

: Unreached

Unreached

Black-box estimators are entirely unaware of the structural feature of the program.

Reached

Direct-
 predecessor

s1

s3 ... s2

... s4

...

cnt=1000

...

cnt=3

2㌲

 has larger chances of being reached than s2 s4

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Our Solution: Structure-aware Reachability Estimator

• Approach: reflect the (control) dependence relation between the program states.

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Our Solution: Structure-aware Reachability Estimator

• Approach: reflect the (control) dependence relation between the program states.

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Our Solution: Structure-aware Reachability Estimator

• Approach: reflect the (control) dependence relation between the program states.

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

Structure-aware:

̂PrSt(s4) = ̂PrEmp(s3, O) × ̂PrBB(s4, O′￼′￼)

where, O′￼′￼= {o ∈ O |Reach(o, s3)}

̂PrSt(s2) = ̂PrEmp(s1, O) × ̂PrBB(s2, O′￼)

where, O′￼= {o ∈ O |Reach(o, s1)}

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Our Solution: Structure-aware Reachability Estimator

• Approach: reflect the (control) dependence relation between the program states.

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

Structure-aware:

̂PrSt(s4) = ̂PrEmp(s3, O) × ̂PrBB(s4, O′￼′￼)

where, O′￼′￼= {o ∈ O |Reach(o, s3)}

̂PrSt(s2) = ̂PrEmp(s1, O) × ̂PrBB(s2, O′￼)

where, O′￼= {o ∈ O |Reach(o, s1)}

Pr(Pred)

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Our Solution: Structure-aware Reachability Estimator

• Approach: reflect the (control) dependence relation between the program states.

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

Structure-aware:

̂PrSt(s4) = ̂PrEmp(s3, O) × ̂PrBB(s4, O′￼′￼)

where, O′￼′￼= {o ∈ O |Reach(o, s3)}

̂PrSt(s2) = ̂PrEmp(s1, O) × ̂PrBB(s2, O′￼)

where, O′￼= {o ∈ O |Reach(o, s1)}

Pr(Pred) Pr(Pred→Next)

• Approach: reflect the (control) dependence relation between the program states.

Our Solution: Structure-aware Reachability Estimator

R

...

s1 s2

s3 s4 s5

s6 H

̂PrSt(H) = ̂PrEmp(R, O) × ̂PrBB(s2, OR) ×
1

3
×

1

2

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Pr(Pred) Pr(Pred→Next)

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

Structure-aware:

̂PrSt(s4) = ̂PrEmp(s3, O) × ̂PrBB(s4, O′￼′￼)

where, O′￼′￼= {o ∈ O |Reach(o, s3)}

̂PrSt(s2) = ̂PrEmp(s1, O) × ̂PrBB(s2, O′￼)

where, O′￼= {o ∈ O |Reach(o, s1)}

• Approach: reflect the (control) dependence relation between the program states.

Our Solution: Structure-aware Reachability Estimator

R

...

s1 s2

s3 s4 s5

s6 H

̂PrSt(H) = ̂PrEmp(R, O) × ̂PrBB(s2, OR) ×
1

3
×

1

2

Empirical

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Pr(Pred) Pr(Pred→Next)

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

Structure-aware:

̂PrSt(s4) = ̂PrEmp(s3, O) × ̂PrBB(s4, O′￼′￼)

where, O′￼′￼= {o ∈ O |Reach(o, s3)}

̂PrSt(s2) = ̂PrEmp(s1, O) × ̂PrBB(s2, O′￼)

where, O′￼= {o ∈ O |Reach(o, s1)}

• Approach: reflect the (control) dependence relation between the program states.

Our Solution: Structure-aware Reachability Estimator

R

...

s1 s2

s3 s4 s5

s6 H

̂PrSt(H) = ̂PrEmp(R, O) × ̂PrBB(s2, OR) ×
1

3
×

1

2

Empirical

PrBB(Reach→Unreach)

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Pr(Pred) Pr(Pred→Next)

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

Structure-aware:

̂PrSt(s4) = ̂PrEmp(s3, O) × ̂PrBB(s4, O′￼′￼)

where, O′￼′￼= {o ∈ O |Reach(o, s3)}

̂PrSt(s2) = ̂PrEmp(s1, O) × ̂PrBB(s2, O′￼)

where, O′￼= {o ∈ O |Reach(o, s1)}

• Approach: reflect the (control) dependence relation between the program states.

Our Solution: Structure-aware Reachability Estimator

R

...

s1 s2

s3 s4 s5

s6 H

̂PrSt(H) = ̂PrEmp(R, O) × ̂PrBB(s2, OR) ×
1

3
×

1

2

Empirical

PrBB(Reach→Unreach)

1 / |childs|s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Pr(Pred) Pr(Pred→Next)

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

Structure-aware:

̂PrSt(s4) = ̂PrEmp(s3, O) × ̂PrBB(s4, O′￼′￼)

where, O′￼′￼= {o ∈ O |Reach(o, s3)}

̂PrSt(s2) = ̂PrEmp(s1, O) × ̂PrBB(s2, O′￼)

where, O′￼= {o ∈ O |Reach(o, s1)}

• Approach: reflect the (control) dependence relation between the program states.

Our Solution: Structure-aware Reachability Estimator

R

...

s1 s2

s3 s4 s5

s6 H

̂PrSt(H) = ̂PrEmp(R, O) × ̂PrBB(s2, OR) ×
1

3
×

1

2

Empirical

PrBB(Reach→Unreach)

1 / |childs|

1 / |childs|

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Pr(Pred) Pr(Pred→Next)

Blackbox estimator:

̂PrBB(s4, O) = ̂PrBB(s2, O)

Structure-aware:

̂PrSt(s4) = ̂PrEmp(s3, O) × ̂PrBB(s4, O′￼′￼)

where, O′￼′￼= {o ∈ O |Reach(o, s3)}

̂PrSt(s2) = ̂PrEmp(s1, O) × ̂PrBB(s2, O′￼)

where, O′￼= {o ∈ O |Reach(o, s1)}

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Our Solution: Structure-aware Reachability Estimator

• Approach: reflect the (control) dependence relation between the program states.

Pr(s2) = Pr(s1) ×
α

1,000 + 2 × α

=
α=2 1 ×

2

1,004
≈ 0.0020

Pr(s4) = Pr(s3) ×
α

3 + 2 × α

=
α=2 0.003 ×

2

10
= 0.0006.

Structure-aware:

Pr(Pred) Lap(Pred→Next)

Previous (Laplace):

Pr(s4) = Pr(s2) =
α=2

α

1000 + 2α

R

...

s1 s2

s3 s4 s5

s6 H

Pr(H) = Pr(R) ×
α

#(R) + 2 × α

×
1

3
×

1

2

Laplace

1 / |childs|

1 / |childs|

By integrating light-weight structural information, the estimated becomes more grounded

being able to distinguish the reaching probability of unreached program states.

Evaluation

RQ 2. Blackbox estimator vs. Structure-aware estimator

Program NCLOC # Func # BB GT

tcas 146 9 63 5.37E-04

schedule2 332 17 138 3.99E-04

totinfo 349 7 132 9.2E-04

printtokens2 438 19 198 7.82E-03

replace 534 21 228 2.73E-04

gif2png* 988 27 700 2.95E-04

jsoncpp 7,251 1,328 5,938 2.28E-03

jasper* 17,385 720 14,417 2.48E-04

readelf 22,347 477 18,578 1.99E-07

freetype2 44,686 1,635 27,521 8.25E-08

• Subjects: 5 Subjects from Siemens suite

 + 5 Open-source C libraries

• Target state: hard-to-be-covered basic block

• Evaluation setting:

Expected number of samples needed to reach10% of samples

1

GT

• The structure-aware estimator performed

significantly better than the blackbox estimators.

Sample size

vs. Bias

Curve

log-bias < 1 means

one order of magnitude difference

| log(GT) − log(esti) |

Individual

cases

Sample size Laplace Good-Turing Struct

10 % 1.28 2.41 0.91

0.01 % 3.00 4.67 1.77

lo
g

-b
ia

s
Blackbox Estimator vs Structure-aware Estimator

Blackbox Structure

Blackbox

• Statistical Reachability Analysis.

Seongmin Lee and Marcel Böhme. ESEC/FSE 2023.

• By integrating lightweight structural information,

statistical reaching probability estimation becomes

more grounded, being able to distinguish the reaching

probability of unreached program states.

Statistical Reachability Analysis

Seongmin Lee
Max Planck Institute for Security and Privacy

Bochum, Germany

seongmin.lee@mpi-sp.org

Marcel Böhme
Max Planck Institute for Security and Privacy

Bochum, Germany

marcel.boehme@acm.org

ABSTRACT

Given a target program state (or statement) ! , what is the proba-

bility that an input reaches !? This is the quantitative reachability

analysis problem. For instance, quantitative reachability analysis

can be used to approximate the reliability of a program (where !

is a bad state). Traditionally, quantitative reachability analysis is

solved as a model counting problem for a formal constraint that

represents the (approximate) reachability of ! along paths in the

program, i.e., probabilistic reachability analysis. However, in pre-

liminary experiments, we failed to run state-of-the-art probabilistic

reachability analysis on reasonably large programs.

In this paper, we explore statistical methods to estimate reach-

ability probability. An advantage of statistical reasoning is that

the size and composition of the program are insubstantial as long

as the program can be executed. We are particularly interested in

the error compared to the state-of-the-art probabilistic reachabil-

ity analysis. We realize that existing estimators do not exploit the

inherent structure of the program and develop structure-aware

estimators to further reduce the estimation error given the same

number of samples. Our empirical evaluation on previous and new

benchmark programs shows that (i) our statistical reachability anal-

ysis outperforms state-of-the-art probabilistic reachability analysis

tools in terms of accuracy, e!ciency, and scalability, and (ii) our

structure-aware estimators further outperform (blackbox) estima-

tors that do not exploit the inherent program structure. We also

identify multiple program properties that limit the applicability of

the existing probabilistic analysis techniques.

CCS CONCEPTS

• Theory of computation→ Program analysis; •Mathematics

of computing → Bayesian computation.

KEYWORDS

Quantitative reachability analysis, Statistical reachability analysis,

Reaching probability, Markov chain

ACM Reference Format:

Seongmin Lee and Marcel Böhme. 2023. Statistical Reachability Analysis. In

Proceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3611643.3616268

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616268

1 INTRODUCTION

The traditional assessment of the reachability of a program state

provides only a true-false answer: either the state is reachable

(e.g., the program may crash for some input) or not (e.g., it never

crashes for any input). Due to the undecidability of the analysis

problem [16] and the restricted expressiveness of the analysis result,

such a binary answer provides only limited information. Instead

of a binary answer, quantitative reachability analysis provides the

probability of how likely a certain program state is reached given

the workload of the program. Such a quantitative measure of reach-

ability can provide more comprehensive information about the

program semantics. For instance, it can estimate how probable is

to reach a crashing state under normal workload, which can be

critical information for software reliability/security/maintenance.

The typical method considered for quantitative reachability anal-

ysis is called probabilistic reachability analysis [27], which analyt-

ically computes the reaching probability directly from the source

code. Probabilistic Symbolic Execution (PSE), the pioneering work

by Geldenhuys et al. [12], computes the reaching probability of a

program state by "nding all the path conditions to reach the state

using symbolic execution and counting the number of inputs satisfy-

ing the path conditions using model counting; the sum of the proba-

bilities becomes the exact reaching probability of the program state.

As PSE may su#er from scalability issues for a large and complex

program, many follow-up works have been proposed to improve

the scalability of probabilistic reachability analysis [11, 13]. Most

recently, Saha et al. proposed PReach which computes the reaching

probability using branch-level probability information [27].

When facing a problem too complex for the analytical method,

especially when it is unmanageable to compute a quantity exactly,

a sampling-based statistical method can be used to overcome the

limitation [4]. It is well-known that Monte Carlo methods have

been successfully applied to numerous problems across various

"elds, including natural sciences [10] and engineering [23], where

the solution is intractable for analytic computation. Recently, in

the context of program analysis, Liyanage et al. [21] proposed a

statistical method to approximate the number of elements that can

be reached by actual program execution, which, previously, can

only be upper-bounded by static analysis.

This work explores how the statistical method can be applied to

quantitative reachability analysis. We propose a statistical reach-

ability analysis, which tackles the quantitative reachability analy-

sis problem with random sampling and statistical modeling. The

main issue of statistical reachability analysis is how to estimate

the reaching probability of a certain program state that has not

yet been observed in the sampling process. To overcome this issue,

we "rst suggest a naive approach of using two well-known esti-

mators, Laplace smoothing and Good-Turing estimator [15], that

can estimate the non-zero probability of unseen events from the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

What is the probability of observing

a new color ball in the next sample?
Present

advanced extensions

to adopt

statistical methods

for more

realistic testing

scenarios.

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

How much more can I achieve

if I spend more time here?X

Statistically Extrapolating the Fuzzing Campaign

Without Extrapolation
american fuzzy lop 2.44b (djpeg)

__

| run time : 0 days, 12 hrs, 0 min, 5 sec | cycles done : 53 |

| last new path : 0 days, 0 hrs, 17 min, 44 sec | current paths : 4944 |

| last uniq crash : none seen yet | uniq crashes : 0 |

. . .

12h into the campaign & 18mins since last path.

Statistically Extrapolating the Fuzzing Campaign

With Extrapolation
extrapolation edition yeah! (djpeg)

residual risk : 7·10^-06 | total inputs : 63.6M |

path coverage : 77.6% paths covered | singletons : 447 |

discover new path : 0 hrs, 1 min, 36 sec | doubletons : 70 |

142k new inputs needed | |

last path. Only 78% of all paths?

extrapolation edition yeah! (djpeg)

residual risk : 8·10^-07 | total inputs : 124.8M |

path coverage : 97.9% paths covered | singletons : 95 |

discover new path : 0 hrs, 15 min, 9 sec | doubletons : 42 |

1.3M new inputs needed | |

paths. 98% of all paths that the fuzzer can cover covered.

Without Extrapolation With Extrapolation

12 hours of running, the last new path was 17 minutes ago.

… should I stop this fuzzing?

A new path will come in 2 minutes? Let’s keep going!

1/4 hour is needed for the next path? Let’s stop!

Extrapolation gives richer information for the stopping criteria for the fuzzing campaign

VS

However, there is a hidden assumption:

Let’s say there is an urn filled with colored balls. The probability of

picking the ball of color = . Let’s say we picked balls from the urn.i pi n

372

Assumption:

“The sampling distribution does not change.”

However, there is a hidden assumption:

Seed Input

Space of Inputs

Blackbox Fuzzing: distribution is fixed

Space of Inputs

Seed Input

Greybox Fuzzing: distribution changes as time goes on

Space of Inputs

Seed Input

Greybox Fuzzing: distribution changes as time goes on

:= Adaptive bias

Blackbox

Sampling distribution

is consistent

Greybox

Sampling distribution

keeps change

Blackbox

Sampling distribution

is consistent

Adaptive bias

Greybox

Sampling distribution

keeps change

≪

Efficiency

Extrapolation of coverage rate U(t + k)

Û(t + k) = Φ̂0 1 − (1 −
Φ1

tΦ̂0 + Φ1
)

k+1

, where Φ̂0 =
t − 1

t

Φ2
1

2Φ2

Estimator for Blackbox

Blackbox

Sampling

distribution

is consistent

Greybox

Sampling

distribution

keeps change

Adaptive bias

≪

Efficiency

Extrapolation of coverage rate U(t + k)

Û(t + k) = Φ̂0 1 − (1 −
Φ1

tΦ̂0 + Φ1
)

k+1

, where Φ̂0 =
t − 1

t

Φ2
1

2Φ2

Estimator for Blackbox

Blackbox

Sampling

distribution

is consistent

Greybox

Sampling

distribution

keeps change

Adaptive bias

≪

Efficiency

Extrapolation of coverage rate U(t + k)

Û(t + k) = Φ̂0 1 − (1 −
Φ1

tΦ̂0 + Φ1
)

k+1

, where Φ̂0 =
t − 1

t

Φ2
1

2Φ2

Estimator for Blackbox

Blackbox

Sampling

distribution

is consistent

Greybox

Sampling

distribution

keeps change

Adaptive bias

≪

Efficiency

The estimators for the blackbox fuzzing will underestimate the performance of the greybox fuzzing.

Extrapolating the Greybox Fuzzing Campaign

• Aim: Predict the future coverage rate of the greybox fuzzing campaign

Extrapolating the Greybox Fuzzing Campaign

• Aim: Predict the future coverage rate of the greybox fuzzing campaign

• In other words, how can we solve the adaptive bias problem?

Extrapolating the Greybox Fuzzing Campaign

• Aim: Predict the future coverage rate of the greybox fuzzing campaign

• In other words, how can we solve the adaptive bias problem?

Microscopic View

Extrapolating the Greybox Fuzzing Campaign

• Aim: Predict the future coverage rate of the greybox fuzzing campaign

• In other words, how can we solve the adaptive bias problem?

Microscopic View
Macroscopic View

Extrapolating the Greybox Fuzzing Campaign

• First key insight — Microscopic view

Extrapolating the Greybox Fuzzing Campaign

• First key insight — Microscopic view

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Adaptive bias

Extrapolating the Greybox Fuzzing Campaign

• First key insight — Microscopic view

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Adaptive bias Less adaptive bias

Extrapolating the Greybox Fuzzing Campaign

• First key insight — Microscopic view

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Adaptive bias Less adaptive bias

Roughly
Blackbox

Extrapolating the Greybox Fuzzing Campaign

• First key insight — Microscopic view

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Adaptive bias Less adaptive bias

Roughly
Blackbox

The near future is

predictable

(relatively) accurately

from the previous

Extrapolating the Greybox Fuzzing Campaign

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

• Potential drawback: Small region has small data to use

• First key insight — Microscopic view

Extrapolating the Greybox Fuzzing Campaign

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

• Potential drawback: Small region has small data to use

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Skewed (selection bias)

coverage record

• First key insight — Microscopic view

Extrapolating the Greybox Fuzzing Campaign

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Shuffle
1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 0 1

1 1 1 1 1

0 0 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 0 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

0 1 1 1 1

Amplifying blackbox fuzzing

- Blackbox Approximation-

• Solution: Shuffle to amplify

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Skewed (selection bias)

coverage record

• First key insight — Microscopic view

Extrapolating the Greybox Fuzzing Campaign

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Shuffle
1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 0 1

1 1 1 1 1

0 0 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 0 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

0 1 1 1 1

Amplifying blackbox fuzzing

- Blackbox Approximation-

• Solution: Shuffle to amplify

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Skewed (selection bias)

coverage record

• First key insight — Microscopic view

Extrapolating the Greybox Fuzzing Campaign

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Shuffle
1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 0 1

1 1 1 1 1

0 0 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 0 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

0 1 1 1 1

Amplifying blackbox fuzzing

- Blackbox Approximation-

Same distribution

• Solution: Shuffle to amplify

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Skewed (selection bias)

coverage record

• First key insight — Microscopic view

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.”

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.”

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.”

1㌱

2㌲

3㌳

1㌱

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.” — There’s a pattern!

1㌱
- New input that increases coverage is found.

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.” — There’s a pattern!

2㌲

- New input that increases coverage is found.

- Inputs around the new input are sampled.

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.” — There’s a pattern!

2㌲

- New input that increases coverage is found.

- Inputs around the new input are sampled.

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.” — There’s a pattern!

3㌳

- New input that increases coverage is found.

- Inputs around the new input are sampled.

➡ Changing the focus (distribution) increases

the chance of covering a new part of the program.

Extrapolating the Greybox Fuzzing Campaign

• Second key insight — Macroscopic view

“Greybox fuzzing’s adaptive bias could be predictable.” — There’s a pattern!

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Coverage Increase Plot of
the Greybox Fuzzing

Methodology

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Roughly Blackbox

1㌱

Coverage Increase Plot of
the Greybox Fuzzing

Methodology

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Roughly Blackbox

1㌱

Regression Model

2㌲

Coverage Increase Plot of
the Greybox Fuzzing

Methodology

Methodology

1 2 3 4 5 6 7 …

1 1 1 1 1 1 1 1 … 1

2 1 1 0 0 0 0 1 … 0

3 0 0 0 1 1 1 0 … 0

4 0 0 0 1 1 0 1 … 1

5 0 0 0 1 1 0 1 … 0

6 1 1 1 1 1 1 0 … 0

7 0 0 0 0 0 0 0 … 0

… … … … … … … … … …

S 0 1 1 1 1 0 0 … 0

Greybox coverage record

Methodology

t0

BB

1 2 3 4 5 6 7 …

1 1 1 1 1 1 1 1 … 1

2 1 1 0 0 0 0 1 … 0

3 0 0 0 1 1 1 0 … 0

4 0 0 0 1 1 0 1 … 1

5 0 0 0 1 1 0 1 … 0

6 1 1 1 1 1 1 0 … 0

7 0 0 0 0 0 0 0 … 0

… … … … … … … … … …

S 0 1 1 1 1 0 0 … 0

Greybox coverage record

Methodology

t0

BB

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Sub-campaign

Reset index

1 2 3 4 5 6 7 …

1 1 1 1 1 1 1 1 … 1

2 1 1 0 0 0 0 1 … 0

3 0 0 0 1 1 1 0 … 0

4 0 0 0 1 1 0 1 … 1

5 0 0 0 1 1 0 1 … 0

6 1 1 1 1 1 1 0 … 0

7 0 0 0 0 0 0 0 … 0

… … … … … … … … … …

S 0 1 1 1 1 0 0 … 0

Greybox coverage record

Methodology

t0

BB

1 2 3 4 5

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Blackbox-ize

Shuffle

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Sub-campaign

Reset index

1 2 3 4 5 6 7 …

1 1 1 1 1 1 1 1 … 1

2 1 1 0 0 0 0 1 … 0

3 0 0 0 1 1 1 0 … 0

4 0 0 0 1 1 0 1 … 1

5 0 0 0 1 1 0 1 … 0

6 1 1 1 1 1 1 0 … 0

7 0 0 0 0 0 0 0 … 0

… … … … … … … … … …

S 0 1 1 1 1 0 0 … 0

Greybox coverage record

Methodology

1 2 3 4 5

9 5 4 3 1

0 1 3 3 4

Singletons
&

Doubletons

Φ1
Φ2

t0

BB

1 2 3 4 5

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Blackbox-ize

Shuffle

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Sub-campaign

Reset index

1 2 3 4 5 6 7 …

1 1 1 1 1 1 1 1 … 1

2 1 1 0 0 0 0 1 … 0

3 0 0 0 1 1 1 0 … 0

4 0 0 0 1 1 0 1 … 1

5 0 0 0 1 1 0 1 … 0

6 1 1 1 1 1 1 0 … 0

7 0 0 0 0 0 0 0 … 0

… … … … … … … … … …

S 0 1 1 1 1 0 0 … 0

Greybox coverage record

Methodology

1 2 3 4 5

9 5 4 3 1

0 1 3 3 4

Singletons
&

Doubletons

Φ1
Φ2

t0

BB

1 2 3 4 5

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Blackbox-ize

Shuffle

Û(t)

t

Blackbox
coverage rate

estimate

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Sub-campaign

Reset index

1 2 3 4 5 6 7 …

1 1 1 1 1 1 1 1 … 1

2 1 1 0 0 0 0 1 … 0

3 0 0 0 1 1 1 0 … 0

4 0 0 0 1 1 0 1 … 1

5 0 0 0 1 1 0 1 … 0

6 1 1 1 1 1 1 0 … 0

7 0 0 0 0 0 0 0 … 0

… … … … … … … … … …

S 0 1 1 1 1 0 0 … 0

Greybox coverage record

Methodology

1 2 3 4 5

9 5 4 3 1

0 1 3 3 4

Singletons
&

Doubletons

Φ1
Φ2

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

t0

BB

1 2 3 4 5

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Blackbox-ize

Shuffle

Û(t)

t

Blackbox
coverage rate

estimate

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Sub-campaign

Reset index

1 2 3 4 5 6 7 …

1 1 1 1 1 1 1 1 … 1

2 1 1 0 0 0 0 1 … 0

3 0 0 0 1 1 1 0 … 0

4 0 0 0 1 1 0 1 … 1

5 0 0 0 1 1 0 1 … 0

6 1 1 1 1 1 1 0 … 0

7 0 0 0 0 0 0 0 … 0

… … … … … … … … … …

S 0 1 1 1 1 0 0 … 0

Greybox coverage record

t0

Regression

Methodology

1 2 3 4 5

9 5 4 3 1

0 1 3 3 4

Singletons
&

Doubletons

Φ1
Φ2

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

t0

BB

1 2 3 4 5

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Blackbox-ize

Shuffle

Û(t)

t

Blackbox
coverage rate

estimate

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Sub-campaign

Reset index

log(t) ∼ log(Û(t))

1 2 3 4 5 6 7 …

1 1 1 1 1 1 1 1 … 1

2 1 1 0 0 0 0 1 … 0

3 0 0 0 1 1 1 0 … 0

4 0 0 0 1 1 0 1 … 1

5 0 0 0 1 1 0 1 … 0

6 1 1 1 1 1 1 0 … 0

7 0 0 0 0 0 0 0 … 0

… … … … … … … … … …

S 0 1 1 1 1 0 0 … 0

Greybox coverage record

t0

Regression

Methodology

1 2 3 4 5

9 5 4 3 1

0 1 3 3 4

Singletons
&

Doubletons

Φ1
Φ2

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

t + k

Extrapolation

t0

BB

1 2 3 4 5

1 1 1 1 1

0 0 0 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 0 1

1 1 1 1 1

0 0 0 0 0

… … … … …

1 0 1 1 1

Blackbox-ize

Shuffle

Û(t)

t

Blackbox
coverage rate

estimate

1 2 3 4 5

1 1 1 1 1

1 0 0 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

… … … … …

1 1 1 1 0

Sub-campaign

Reset index

Greybox
coverage rate
extrapolate

Evaluation: Coverage Rate Prediction

Q. How accurate is our regression model considering the adaptive bias compared to

the existing blackbox extrapolation model ?

t0 t + k

Û(t)

t

VS
Our

Extrapolator

Û(t + k)
Φ̂0 1 − (1 −

Φ1

tΦ̂0 + Φ1
)

k
Existing

Extrapolator

Û(t + k)

Consider the adaptive biasIgnores the adaptive bias

Evaluation: Coverage Rate Prediction

Q. How accurate is our regression model considering the adaptive bias compared to

the existing blackbox extrapolation model ?

t0 t + k

Û(t)

t

VS
Our

Extrapolator

Û(t + k)
Φ̂0 1 − (1 −

Φ1

tΦ̂0 + Φ1
)

k
Existing

Extrapolator

Û(t + k)

Consider the adaptive biasIgnores the adaptive bias

• Subject program: five open-source C libraries

• Evaluation Scenario:

Evaluation: Coverage Rate Prediction

Q. How accurate is our regression model considering the adaptive bias compared to

the existing blackbox extrapolation model ?

t0 t + k

Û(t)

t

VS
Our

Extrapolator

Û(t + k)
Φ̂0 1 − (1 −

Φ1

tΦ̂0 + Φ1
)

k
Existing

Extrapolator

Û(t + k)

Consider the adaptive biasIgnores the adaptive bias

• Subject program: five open-source C libraries

• Evaluation Scenario: 1) run the greybox fuzzer until having data points

2) apply each extrapolator to extrapolate

3) run the greybox fuzzer for more data points to get .

t

Û(t + k)

k U(t + k)

Evaluation: Coverage Rate Prediction

Q. How accurate is our regression model considering the adaptive bias compared to

the existing blackbox extrapolation model ?

t0 t + k

Û(t)

t

VS
Our

Extrapolator

Û(t + k)
Φ̂0 1 − (1 −

Φ1

tΦ̂0 + Φ1
)

k
Existing

Extrapolator

Û(t + k)

Consider the adaptive biasIgnores the adaptive bias

• Subject program: five open-source C libraries

• Evaluation Scenario: 1) run the greybox fuzzer until having data points

2) apply each extrapolator to extrapolate

3) run the greybox fuzzer for more data points to get .

t

Û(t + k)

k U(t + k)

Compare

Evaluation: Coverage Rate Prediction

freetype2 gif2png jsoncpp jasper readelf

25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125

−6

−4

−2

0

2

4

Prediction Point t0 (hrs)

L
o
g
 E

rr
o
r

Chao and Jost approach Our approach

“Our extrapolator exhibits

at least one order of magnitude lower absolute bias

than the existing extrapolator for 4 out of 5 subjects,

especially for long-term prediction.”

Difference between vs. log(U(t + k)) log(Û(t + k))

The average ratio :U(t + k)/Û(t + k)

[Ours] 1.17 - 7[Existing] 1.6 - 800

across all subjects.

(close to 1 is better)

Evaluation: Coverage Rate Prediction

freetype2 gif2png jsoncpp jasper readelf

25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125 25 37.5 50 62.5 75 87.5 100 112.5 125

−6

−4

−2

0

2

4

Prediction Point t0 (hrs)

L
o
g
 E

rr
o
r

Chao and Jost approach Our approach

“Our extrapolator exhibits

at least one order of magnitude lower absolute bias

than the existing extrapolator for 4 out of 5 subjects,

especially for long-term prediction.”

Difference between vs. log(U(t + k)) log(Û(t + k))

The average ratio :U(t + k)/Û(t + k)

[Ours] 1.17 - 7[Existing] 1.6 - 800

across all subjects.

(close to 1 is better)

⇒ Well-handled the adaptive bias

Extrapolating Coverage Rate in Greybox Fuzzing

Danushka Liyanage∗

Monash University

Australia

Seongmin Lee∗

MPI-SP

Germany

Chakkrit Tantithamthavorn
Monash University

Australia

Marcel Böhme
MPI-SP

Germany

ABSTRACT

A fuzzer can literally run forever. However, as more resources are

spent, the coverage rate continuously drops, and the utility of the

fuzzer declines. To tackle this coverage-resource tradeo", we could

introduce a policy to stop a campaign whenever the coverage rate

drops below a certain threshold value, say 10 new branches covered

per 15 minutes. During the campaign, can we predict the coverage

rate at some point in the future? If so, how well can we predict the

future coverage rate as the prediction horizon or the current cam-

paign length increases? How can we tackle the statistical challenge

of adaptive bias, which is inherent in greybox fuzzing (i.e., samples

are not independent and identically distributed)?

In this paper, we i) evaluate existing statistical techniques to

predict the coverage rate! ("0 + #) at any time "0 in the campaign

after a period of # units of time in the future and ii) develop a new

extrapolation methodology that tackles the adaptive bias. We pro-

pose to e#ciently simulate a large number of blackbox campaigns

from the collected coverage data, estimate the coverage rate for

each of these blackbox campaigns and conduct a simple regression

to extrapolate the coverage rate for the greybox campaign.

Our empirical evaluation using the Fuzztastic fuzzer benchmark

demonstrates that our extrapolation methodology exhibits at least

one order of magnitude lower error compared to the existing bench-

mark for 4 out of 5 experimental subjects we investigated. Notably,

compared to the existing extrapolation methodology, our extrapola-

tor excels in making long-term predictions, such as those extending

up to three times the length of the current campaign.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Security and privacy→ Software security engineering.

KEYWORDS

greybox fuzzing, extrapolation, coverage rate, adaptive bias, statis-

tical method

∗Both authors contributed equally to this research.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639198

1 INTRODUCTION

At the turn of the millennium, the late Mary-Jean Harrold drew a

research roadmap for the software testing community of the future

[13]. She highlighted the "development of techniques and tools for

use in estimating, predicting, and performing testing on evolving

software systems" as one of $ve research pointers. While there has

been some recent progress in the estimation of pertinent quantities

in the testing process, we have yet to start exploring methodologies

for prediction.

The rate at which new coverage is achieved is considered a fun-

damental measure of the e#ciency of a fuzzing campaign. A fuzzer

is an automated software testing tool, and with increasing cover-

age, we mean the generation of inputs that cover new program

elements, such as a branch or a statement. If the coverage rate drops

below a certain threshold, the tester will abort the ongoing fuzzing

campaign for the lack of progress. Terminating a fuzzing campaign

early will help release computational resources and reduce the car-

bon footprint [17, 26]. If, throughout the campaign, the tester could

accurately predict the coverage rate at some point in the future,

they could conduct a cost-bene$t analysis to assess the resources

required to achieve the targeted testing progress. Since fuzzing is a

preliminary testing technique that constitutes sophisticated testing

frameworks (e.g., a hybrid/ensemble fuzzing, an automated test

case generation framework, etc.), such a prediction would allow the

tester to adequately allocate resources (time and computing power)

for the entire testing process in advance [29].

One of the most successful fuzzing techniques is called greybox

fuzzing, which takes a mutation-based, coverage-guided approach.

A greybox fuzzer is mutation-based because it uses a corpus of pro-

gram inputs that are randomly mutated to slightly corrupt the seed

$le while preserving much of the unknown but required input for-

mat. A greybox fuzzer is coverage-guided because it adds generated

inputs to the corpus that have been observed to increase coverage.

The hope is that an input generated from a coverage-increasing

input is itself more likely coverage-increasing. Since the probability

of covering a speci$c program element changes in this process, the

underlying distribution over these elements is not invariant. How-

ever, invariance is a key assumption in most statistical estimation

and extrapolation methodologies. Hence, a key statistical challenge

in the domain of greybox fuzzing is thus to tackle the resulting

adaptive bias.

In this paper, we introduce a novel extrapolation methodology

that allows us to predict the coverage rate! ("0 +$"0) in a greybox

campaign of length "0 if the campaign length was extended$ more

times while accounting for adaptive bias. We systematically select

This work is licensed under a Creative Commons Attribution International 4.0 License.

• Extrapolating Coverage Rate in Greybox Fuzzing

Danushka Liyanage*, Seongmin Lee*, Chakkrit

Tantithamthavorn, and Marcel Böhme. ICSE 2024.

• Extrapolate the future progress of the greybox fuzzing by

handling the adaptive bias through introducing a

regression model over predictions on subcampaigns.

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

How much of a proportion of the

behavior have we tested in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

?
?

Questions about

the unseen

*Red : semantic meaning

*Black : concrete task

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

How much of a proportion of the

behavior have we tested in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

?
?

Questions about

the unseen

*Red : semantic meaning

*Black : concrete task

Questions about

the unseen in an

Urn illed with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

≈1

n

n Φ 1

n

(≈1)
2

2≈2

−≈0 1 Φ (1 Φ
≈1

n
−≈0 + ≈1

)
m

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

How much of a proportion of the

behavior have we tested in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

?
?

Questions about

the unseen

*Red : semantic meaning

*Black : concrete task

Questions about

the unseen in an

Urn illed with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

≈1

n

n Φ 1

n

(≈1)
2

2≈2

−≈0 1 Φ (1 Φ
≈1

n
−≈0 + ≈1

)
m

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

How much of a proportion of the

behavior have we tested in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

?
?

Questions about

the unseen

*Red : semantic meaning

*Black : concrete task

Questions about

the unseen in an

Urn illed with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

≈1

n

n Φ 1

n

(≈1)
2

2≈2

−≈0 1 Φ (1 Φ
≈1

n
−≈0 + ≈1

)
m

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

≈M
0

=
Φ

1

n

The estimation of the probability of our following sample is something that has

never been seen before.

Good-Turing estimator

Solution:

of *singleton colors

colors only seen
once in samples

of samples

Alan Turing

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

How much of a proportion of the

behavior have we tested in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

?
?

Questions about

the unseen

*Red : semantic meaning

*Black : concrete task

Questions about

the unseen in an

Urn illed with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

≈1

n

n Φ 1

n

(≈1)
2

2≈2

−≈0 1 Φ (1 Φ
≈1

n
−≈0 + ≈1

)
m

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

≈M
0

=
Φ

1

n

The estimation of the probability of our following sample is something that has

never been seen before.

Good-Turing estimator

Solution:

of *singleton colors

colors only seen
once in samples

of samples

Alan Turing

: the number of new discoveries when more samples are retrieved≈(m) m

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Φ≈(m)

= Φ−0 1 ̂ (1 ̂
−1

n
Φ−0 + −1

)
m

Φ−0

Exponentially decaying

m

: the number of singletons

: the number of doubletons

−1

−2

• Approach: refiect the (control) dependence relation between the program states.

Our Solution: Structure-aware Reachability Estimator

69

R

...

s1 s2

s3 s4 s5

s6 H

≈PrSt(H) = ≈PrEmp(R, O) Φ ≈PrBB(s2, OR) Φ
1

3
Φ

1

2

Empirical

PrBB(Reach→Unreach)

1 / |childs|

1 / |childs|

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Pr(Pred) Pr(Pred→Next)

Blackbox estimator:

≈PrBB(s4, O) = ≈PrBB(s2, O)

Structure-aware:

≈PrSt(s4) = ≈PrEmp(s3, O) Φ ≈PrBB(s4, O− −)

where,ffiO− − = {o ̂ O |Reach(o, s3)}

≈PrSt(s2) = ≈PrEmp(s1, O) Φ ≈PrBB(s2, O−)

where,ffiO− = {o ̂ O |Reach(o, s1)}

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

How much of a proportion of the

behavior have we tested in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

?
?

Questions about

the unseen

*Red : semantic meaning

*Black : concrete task

Questions about

the unseen in an

Urn illed with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

≈1

n

n Φ 1

n

(≈1)
2

2≈2

−≈0 1 Φ (1 Φ
≈1

n
−≈0 + ≈1

)
m

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

≈M
0

=
Φ

1

n

The estimation of the probability of our following sample is something that has

never been seen before.

Good-Turing estimator

Solution:

of *singleton colors

colors only seen
once in samples

of samples

Alan Turing

: the number of new discoveries when more samples are retrieved≈(m) m

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Φ≈(m)

= Φ−0 1 ̂ (1 ̂
−1

n
Φ−0 + −1

)
m

Φ−0

Exponentially decaying

m

: the number of singletons

: the number of doubletons

−1

−2

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

• Approach: refiect the (control) dependence relation between the program states.

Our Solution: Structure-aware Reachability Estimator

69

R

...

s1 s2

s3 s4 s5

s6 H

≈PrSt(H) = ≈PrEmp(R, O) Φ ≈PrBB(s2, OR) Φ
1

3
Φ

1

2

Empirical

PrBB(Reach→Unreach)

1 / |childs|

1 / |childs|

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Pr(Pred) Pr(Pred→Next)

Blackbox estimator:

≈PrBB(s4, O) = ≈PrBB(s2, O)

Structure-aware:

≈PrSt(s4) = ≈PrEmp(s3, O) Φ ≈PrBB(s4, O− −)

where,ffiO− − = {o ̂ O |Reach(o, s3)}

≈PrSt(s2) = ≈PrEmp(s1, O) Φ ≈PrBB(s2, O−)

where,ffiO− = {o ̂ O |Reach(o, s1)}

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

How much of a proportion of the

behavior have we tested in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

?
?

Questions about

the unseen

*Red : semantic meaning

*Black : concrete task

Questions about

the unseen in an

Urn illed with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

≈1

n

n Φ 1

n

(≈1)
2

2≈2

−≈0 1 Φ (1 Φ
≈1

n
−≈0 + ≈1

)
m

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

≈M
0

=
Φ

1

n

The estimation of the probability of our following sample is something that has

never been seen before.

Good-Turing estimator

Solution:

of *singleton colors

colors only seen
once in samples

of samples

Alan Turing

: the number of new discoveries when more samples are retrieved≈(m) m

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Φ≈(m)

= Φ−0 1 ̂ (1 ̂
−1

n
Φ−0 + −1

)
m

Φ−0

Exponentially decaying

m

: the number of singletons

: the number of doubletons

−1

−2

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Roughly Blackbox

"

Regression Model

#

Coverage Increase Plot of
the Greybox Fuzzing

Methodology

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

• Approach: refiect the (control) dependence relation between the program states.

Our Solution: Structure-aware Reachability Estimator

69

R

...

s1 s2

s3 s4 s5

s6 H

≈PrSt(H) = ≈PrEmp(R, O) Φ ≈PrBB(s2, OR) Φ
1

3
Φ

1

2

Empirical

PrBB(Reach→Unreach)

1 / |childs|

1 / |childs|

s1

s3 ... s2

... s4

cnt=1000

...

cnt=3

Total sample: 1000

Pr(Pred) Pr(Pred→Next)

Blackbox estimator:

≈PrBB(s4, O) = ≈PrBB(s2, O)

Structure-aware:

≈PrSt(s4) = ≈PrEmp(s3, O) Φ ≈PrBB(s4, O− −)

where,ffiO− − = {o ̂ O |Reach(o, s3)}

≈PrSt(s2) = ≈PrEmp(s1, O) Φ ≈PrBB(s2, O−)

where,ffiO− = {o ̂ O |Reach(o, s1)}

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

How much of a proportion of the

behavior have we tested in this program?

What is the probability of observing

a new coverage or a new bug?

How many unobserved

vulnerabilities are remaining?

What is the maximum coverage

we can achieve?

Should we keep running

the testing/fuzzing?

How much more can I achieve

if I spend more time here?X

?
?

Questions about

the unseen

*Red : semantic meaning

*Black : concrete task

Questions about

the unseen in an

Urn illed with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

≈1

n

n Φ 1

n

(≈1)
2

2≈2

−≈0 1 Φ (1 Φ
≈1

n
−≈0 + ≈1

)
m

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

≈M
0

=
Φ

1

n

The estimation of the probability of our following sample is something that has

never been seen before.

Good-Turing estimator

Solution:

of *singleton colors

colors only seen
once in samples

of samples

Alan Turing

: the number of new discoveries when more samples are retrieved≈(m) m

Anne Chao and Robert K Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT 41

 Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93

Φ≈(m)

= Φ−0 1 ̂ (1 ̂
−1

n
Φ−0 + −1

)
m

Φ−0

Exponentially decaying

m

: the number of singletons

: the number of doubletons

−1

−2

(b)

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#
P

a
th

s

Roughly Blackbox

"

Regression Model

#

Coverage Increase Plot of
the Greybox Fuzzing

Methodology

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

Present

advanced extensions

to adopt

statistical methods

for more

realistic testing

scenarios.

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

How much more can I achieve

if I spend more time here?X

How can we assure the
Quality of Software

Analytical Methods

Mathematical proof can provide
a formal guarantee

Analytical Methods

Mathematical proof can provide
a formal guarantee

Scalability issues on
modern software

Analytical Methods Empirical Methods

Mathematical proof can provide
a formal guarantee

Scalability issues on
modern software

Test software by running it with
various test executions

By actually running the software,
it solves the scalability issue

Analytical Methods Empirical Methods

Mathematical proof can provide
a formal guarantee

Scalability issues on
modern software

Test software by running it with
various test executions

By actually running the software,
it solves the scalability issue

Analytical Methods Empirical Methods

Mathematical proof can provide
a formal guarantee

Scalability issues on
modern software

Test software by running it with
various test executions

By actually running the software,
it solves the scalability issue

?? There is always unseen
⇒ No guarantee

Analytical Methods Empirical Methods

Mathematical proof can provide
a formal guarantee

Scalability issues on
modern software

Test software by running it with
various test executions

?? There is always unseen
⇒ No guarantee

Statistics
can solve

this!

By actually running the software,
it solves the scalability issue

Statistical Software Quality Assurance
 to ensure the correctness of software”“Data-driven analysis

Statistical Software Quality Assurance
 to ensure the correctness of software”“Data-driven analysis

Statistical Software Quality Assurance

Evolving Software Guarantee for Rare State

 to ensure the correctness of software”“Data-driven analysis

Statistical Software Quality Assurance

Modularization Adaptation

Evolving Software Guarantee for Rare State

Analytic + Statistic

 to ensure the correctness of software”“Data-driven analysis

Statistical Software Quality Assurance

ML models are already widely used in SE research/practice.

ChatGPT

Software
Engineering

 to ensure the correctness of software”““““““““““““ ““““““““

Statistical Software Quality Assurance

ML models are already widely used in SE research/practice.

ChatGPT

Software
Engineering

 to ensure the correctness of software”“Data-driven analysis

Magic of Statistics for Software Testing:
How to Foresee the Unseen

FOR SECURITY AND PRIVACY

MAX PLANCK INSTITUTE

Dr. Seongmin Lee

� https://nimgnoeseel.github.io/

The Fundamental Problem of
Soware Testing

“There is always unseen.”

[]

Questions about

the unseen in an

Urn illed with Balls

What is the probability of observing

a new color ball in the next sample?

372

Missing Mass

Species Richness Extrapolation

≈1

n

n Φ 1

n

(≈1)
2

2≈2

−≈0 1 Φ (1 Φ
≈1

n
−≈0 + ≈1

)
m

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

Check how the

statistical estimator can

measure the

unseen in soware testing.

How much more can I achieve

if I spend more time here?X

Present

advanced extensions

to adopt

statistical methods

for more

realistic testing

scenarios.

What is the probability of observing

a new coverage or a new bug?

Missing Mass

Extrapolation

How much more can I achieve

if I spend more time here?X

