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Scientific Enquiry as a Testing Problem

“| propose to replace [..] the question of the sources
of our knowledge [e.q., how to identify the “best”
scientific theory| by the entirely different question:
'How can we hope to detect and eliminate error?’

“The proper answer to my question [..] is, | believe,
‘By critizing the theories or guesses of others and
—If we train ourselves to do so—Dby critizing our
own theories and guesses.”
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How do we measure progress in automation?

we demonstrate that each new technigque solves the problem more effectively than the state-of-the-art [SOTA|]

 How do we know if a technigue solves the problem more effectively?
 We define a measure of success (e.g., max. code coverage for testing problem).

 \We choose a few representative problem instances (e.g., programs to test).

 Run a benchmarking framework to compare technique implementations.
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ABSTRACT

Randomized algorithms have been used to successfully address many
different types of software engineering problems. This type of al-
gorithms employ a degree of randomness as part of their logic.
Randomized algorithms are useful for difficult problems where a
precise solution cannot be derived in a deterministic way within
reasonable time. However, randomized algorithms produce differ-
ent results on every run when applied to the same problem instance.
It is hence important to assess the effectiveness of randomized algo-
rithms by collecting data from a large enough number of runs. The
use of rigorous statistical tests is then essential to provide support
to the conclusions derived by analyzing such data. In this paper, we
provide a systematic review of the use of randomized algorithms in
selected software engineering venues in 2009. Its goal is not to per-
form a complete survey but to get a representative snapshot of cur-
rent practice in software engineering research. We show that ran-
domized algorithms are used in a significant percentage of papers
but that, in most cases, randomness is not properly accounted for.
This casts doubts on the validity of most empirical results assess-
ing randomized algorithms. There are numerous statistical tests,
based on different assumptions, and it is not always clear when and
how to use these tests. We hence provide practical guidelines to
support empirical research on randomized algorithms in software
engineering.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General;
1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms

Algorithms, Experimentation, Reliability, Theory

Keywords

Statistical difference, effect size, parametric test, non-parametric
test, confidence interval, Bonferroni adjustment, systematic review,
survey.
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1. INTRODUCTION

Many problems in software engineering can be alleviated through
automated support. For example, automated techniques exist to
generate test cases that satisfy some desired coverage criteria on
the system under test, such as for example branch [26] and path
coverage [22]. Because often these problems are undecidable, de-
terministic algorithms that are able to provide optimal solutions in
reasonable time do not exist. The use of randomized algorithms
[44] is hence necessary to address this type of problems.

The most well-known example of randomized algorithm in soft-
ware engineering is perhaps random testing [13, 6]. Techniques
that use random testing are of course randomized, as for example
DART [22] (which combines random testing with symbolic execu-
tion). Furthermore, there is a large body of work on the application
of search algorithms in software engineering [25], as for example
Genetic Algorithms. Since practically all search algorithms are ran-
domized and numerous software engineering problems can be ad-
dressed with search algorithms, randomized algorithms therefore
play an increasingly important role. Applications of search algo-
rithms include software testing [41], requirement engineering [8],
project planning and cost estimation [2], bug fixing [7], automated
maintenance [43], service-oriented software engineering [9], com-
piler optimisation [11] and quality assessment [32].

A randomized algorithm may be strongly affected by chance. It
may find an optimal solution in a very short time or may never
converge towards an acceptable solution. Running a randomized
algorithm twice on the same instance of a software engineering
problem usually produces different results. Hence, researchers in
software engineering that develop novel techniques based on ran-
domized algorithms face the problem of how to properly evaluate
the effectiveness of these techniques.

To analyze the effectiveness of a randomized algorithm, it is im-
portant to study the probability distribution of its output or various
performance metrics [44]. For example, a practitioner might want
to know what is the execution time of those algorithms on average.
But randomized algorithms can yield very complex and high vari-
ance probability distributions, and hence looking only at average
values can be misleading, as we will discuss in more details in this
paper.

The probability distribution of a randomized algorithm can be
analyzed by running such an algorithm several times in an inde-
pendent way, and then collecting appropriate data about its results
and performance. For example, consider the case in which we want
to find failures in software by using random testing (assuming that
an automated oracle is provided). As a way to assess its perfor-
mance, we can sample test cases at random until the first failure is
detected. In the first experiment, we might find a failure after sam-
pling 24 test cases (for example). We hence repeat this experiment
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ABSTRACT Why do we think fuzzers work? While inspiration for new ideas

Fuzz testing has enjoyed great success at discovering security criti-
cal bugs in real software. Recently, researchers have devoted sig-
nificant effort to devising new fuzzing techniques, strategies, and
algorithms. Such new ideas are primarily evaluated experimentally
so an important question is: What experimental setup is needed
to produce trustworthy results? We surveyed the recent research
literature and assessed the experimental evaluations carried out
by 32 fuzzing papers. We found problems in every evaluation we
considered. We then performed our own extensive experimental
evaluation using an existing fuzzer. Our results showed that the
general problems we found in existing experimental evaluations
can indeed translate to actual wrong or misleading assessments. We
conclude with some guidelines that we hope will help improve ex-
perimental evaluations of fuzz testing algorithms, making reported
results more robust.
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1 INTRODUCTION

A fuzz tester (or fuzzer) is a tool that iteratively and randomly gener-
ates inputs with which it tests a target program. Despite appearing
“naive” when compared to more sophisticated tools involving SMT
solvers, symbolic execution, and static analysis, fuzzers are sur-
prisingly effective. For example, the popular fuzzer AFL has been
used to find hundreds of bugs in popular programs [1]. Comparing
AFL head-to-head with the symbolic executor angr, AFL found 76%
more bugs (68 vs. 16) in the same corpus over a 24-hour period [50].
The success of fuzzers has made them a popular topic of research.
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may be drawn from mathematical analysis, fuzzers are primarily
evaluated experimentally. When a researcher develops a new fuzzer
algorithm (call it A), they must empirically demonstrate that it
provides an advantage over the status quo. To do this, they must
choose:

o a compelling baseline fuzzer B to compare against;

o asample of target programs—the benchmark suite;

o a performance metric to measure when A and B are run on
the benchmark suite; ideally, this is the number of (possibly
exploitable) bugs identified by crashing inputs;

o a meaningful set of configuration parameters, e.g., the seed
file (or files) to start fuzzing with, and the timeout (i.e., the
duration) of a fuzzing run.

An evaluation should also account for the fundamentally random
nature of fuzzing: Each fuzzing run on a target program may pro-
duce different results than the last due to the use of randomness.
As such, an evaluation should measure sufficiently many trials to
sample the overall distribution that represents the fuzzer’s perfor-
mance, using a statistical test [38] to determine that A’s measured
improvement over B is real, rather than due to chance.

Failure to perform one of these steps, or failing to follow rec-
ommended practice when carrying it out, could lead to misleading
or incorrect conclusions. Such conclusions waste time for practi-
tioners, who might profit more from using alternative methods
or configurations. They also waste the time of researchers, who
make overly strong assumptions based on an arbitrary tuning of
evaluation parameters.

We examined 32 recently published papers on fuzz testing (see
Table 1) located by perusing top-conference proceedings and other
quality venues, and studied their experimental evaluations. We
found that no fuzz testing evaluation carries out all of the above
steps properly (though some get close). This is bad news in theory,
and after carrying out more than 50000 CPU hours of experiments,
we believe it is bad news in practice, too. Using AFLFast [6] (as A)
and AFL (as baseline B), we carried out a variety of tests of their
performance. We chose AFLFast as it was a recent advance over
the state of the art; its code was publicly available; and we were
confident in our ability to rerun the experiments described by the
authors in their own evaluation and expand these experiments by
varying parameters that the original experimenters did not. This
choice was also driven by the importance of AFL in the literature:
14 out of 32 papers we examined used AFL as a baseline in their
evaluation. We targeted three binutils programs (nm, objdump, and
cxxfilt) and two image processing programs (gif2png and FFmpeg)
used in prior fuzzing evaluations [9, 44, 45, 55, 58]. We found that
experiments that deviate from the above recipe could easily lead
one to draw incorrect conclusions, for these reasons:
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number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at finding bugs.
Curiously enough, however, we find no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at finding bugs.
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1 INTRODUCTION

In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug finding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them finds any bugs. If indeed they don’t, we
might have some confidence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would find no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of finding bugs? A widely used proxy measure
of fuzzer effectiveness is the code coverage that is achieved. After
all, a fuzzer cannot find bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers X 24 C programs x 20 fuzzing
campaigns of 23 hours (~ 13 CPU years). We use three measures of
coverage and two measures of bug finding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug finding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly different. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the difference in coverage and the difference in bug finding are
statistically significant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug finding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the differences in terms of
coverage and bug finding are statistically significant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the differences in terms of coverage and bug finding
is statistically significant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
differences to be statistically significant at p < 0.0001 for coverage
and bug finding, do we find a strong agreement. However, statistical
significance at p < 0.0001 only in terms of coverage is not sufficient;
we again find only weak agreement. The increase in agreement
with statistical significance is not observed when we measure bug
finding using the time-to-error. We also find that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Abstract—Fuzzing has proven to be a highly effective approach
to uncover software bugs over the past decade. After AFL pop-
ularized the groundbreaking concept of lightweight coverage
feedback, the field of fuzzing has seen a vast amount of scien-
tific work proposing new techniques, improving methodological
aspects of existing strategies, or porting existing methods to
new domains. All such work must demonstrate its merit by
showing its applicability to a problem, measuring its perfor-
mance, and often showing its superiority over existing works in
a thorough, empirical evaluation. Yet, fuzzing is highly sensitive
to its target, envirt and cir e.g.,r

in the testing process. After all, relying on randomness is one
of the core principles of fuzzing, governing many aspects of
a fuzzer’s behavior. Combined with the often highly difficult
to control environment, the reproducibility of experiments is a
crucial concern and requires a prudent evaluation setup. To
address these threats to validity, several works, most notably
Evaluating Fuzz Testing by Klees et al., have outlined how
a carefully designed evaluation setup should be implemented,
but it remains unknown to what extent their recommendations
have been adopted in practice.

In this work, we systematically analyze the evaluation
of 150 fuzzing papers published at the top venues between
2018 and 2023. We study how existing guidelines are imple-
mented and observe potential shortcomings and pitfalls. We
find a surprising disregard of the existing guidelines regarding
statistical tests and systematic errors in fuzzing evaluations.
For example, when investigating reported bugs, we find that
the search for vulnerabilities in real-world software leads to
authors requesting and receiving CVEs of questionable quality.
Extending our literature analysis to the practical domain, we
attempt to reproduce claims of eight fuzzing papers. These
case studies allow us to assess the practical reproducibility
of fuzzing research and identify archetypal pitfalls in the
evaluation design. Unfortunately, our reproduced results reveal
several deficiencies in the studied papers, and we are unable to
fully support and reproduce the respective claims. To help the
field of fuzzing move toward a scientifically reproducible eval-
uation strategy, we propose updated guidelines for
a fuzzing evaluation that future work should follow.

Aucti

1. Introduction

Fuzzing, a portmanteau of “fuzz testing”, has gained
much attention in recent years, and the method has proven
to be highly successful in uncovering many types of faults
in software systems. Companies such as Meta, Google, and
Oracle have invested significant resources in this technology
and use it to test their products. Large software projects such
as web browsers or the Linux kernel incorporate fuzzing
into their development cycle, and Google is running an
extensive and continuous fuzzing campaign for more than
1,200 open-source projects via OSS-Fuzz [62]. Beyond the
wide acceptance in the industry, a large number of academic
papers have proposed numerous improvements and novel
techniques to enhance fuzzing further. More specifically, we
found that, over the past six years, more than 280 papers on
fuzzing have been published in the top computer security
and software engineering venues.

A cornerstone of fuzzing research, and science in gen-
eral, is that other researchers can critically assess the cor-
rectness of scientific results. To this end, the research results
must be reproducible, meaning that another group should be
able to obtain the same results using the same experimental
setup, often by using a research artifact provided by the au-
thors [8]. Reproducibility is paramount for other researchers
to understand, trust, and build on the research results.

To enable high-quality research and provide a common
foundation for evaluating fuzzing methods, several works
describe how newly proposed fuzzing approaches should be
evaluated. In 2018, the first and most influential paper de-
scribing a reproducible evaluation design was published by
Klees et al. [88]. It describes guidelines to advise researchers
on how fuzzing research should evaluate their respective
contributions. For example, a crucial insight introduced by
Klees et al. is the repetition of experiments to account for
the inherent randomness of the fuzzing process. Although
Klees et al. recommend “a sufficient number of trials” and
use 30 trials in their own experiments, we found that in
practice, this recommendation is interpreted as anything
between three and 20 repetitions. Another guideline is to
confirm the fuzzers’ performance statistically; however, this
makes little sense with few repetitions and is often skipped.
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* Highest standards of experimental design (20+ trials, 23hrs, 20+ programs).
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ABSTRACT

Fuzzing is a key tool used to reduce bugs in production software. At
Google, fuzzing has uncovered tens of thousands of bugs. Fuzzing
is also a popular subject of academic research. In 2020 alone, over
120 papers were published on the topic of improving, developing,
and evaluating fuzzers and fuzzing techniques. Yet, proper evalu-
ation of fuzzing techniques remains elusive. The community has
struggled to converge on methodology and standard tools for fuzzer
evaluation.

To address this problem, we introduce FuzzBENCH as an open-
source turnkey platform and free service for evaluating fuzzers.
It aims to be easy to use, fast, reliable, and provides reproducible
experiments. Since its release in March 2020, FuzzBENCH has been
widely used both in industry and academia, carrying out more than
150 experiments for external users. It has been used by several
published and in-the-work papers from academic groups, and has
had real impact on the most widely used fuzzing tools in industry.
The presented case studies suggest that FuzzBENCH is on its way
to becoming a standard fuzzer benchmarking platform.
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1 INTRODUCTION

Fuzzing has attracted the attention of both industry and academia
because it is effective at finding bugs in real-world software, not
just in experiments. Today, fuzzing has seen high adoption among
developers [34] and is used to find bugs in widely used production
software [26, 27, 40, 42]. At Google we have found tens of thou-
sands of bugs [1] with fuzzers like AFL [45], libFuzzer [37] and
Honggfuzz [43]. Academic research on fuzzing has driven many
improvements since the inception of coverage-guided fuzzing [45]
- Google Scholar reports several thousand published papers since
2014 [28].

While fuzzing efforts have been successful in improving software
quality, proper evaluation of fuzzing techniques is still a challenge.
There is no consensus on which tools and techniques are effective
and generalize well for fuzzer comparison. This is in part due to the
lack of standard benchmarking tools, metrics, and representative
program datasets, all of which have hampered reproducibility [48].

Klees et al. [31] were the first to study the current state of fuzzing
evaluations. They analyzed 32 fuzzing research papers and found
that none provided enough “evidence to justify general claims of
effectiveness”. More specifically, some papers do not use a large
and diverse set of real-world benchmarks, have too few trials, use
short trials, or lack statistical tests. Furthermore, it is hard to cross-
compare between all papers as they typically use different evalu-
ation setup and configuration (e.g., how experiments are run and
measured), different subjects (benchmark programs) or even differ-
ent coverage metrics [41].

Another common challenge is that sound fuzzer evaluation has
a high cost, both in researcher time and computational resources. A
typical evaluation compares a large number of tools on a large num-
ber of subjects (benchmark programs). Setting up all these tools and
subjects and making sure that each tool-subject pair works together
(i.e., compiles, runs) takes significant effort. Some researchers we
talked to described spending several months working on evaluation.
A sound evaluation also needs massive computation time (on the
order of CPU-years) and resources, as each tool-subject pair needs
to run multiple times for statistical significance. In practice, it can
take up to ~ 11 CPU-years to run a well-conducted experiment
(e.g., 24 hours x 20 trials x 10 fuzzers X 20 subjects). On Google
Cloud, this experiment could cost over $2,000. Considering the re-
peated evaluations necessary during the development of a fuzzing
tool, research can require CPU-centuries and tens of thousands of
dollars.

FuzzBENCH aims to alleviate these problems by providing an
open-source fuzzer benchmarking service. We designed it following
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* Highest standards of experimental design (20+ trials, 23hrs, 20+ programs).
50+ fuzzers, 150+ experiments for 120+ papers (as of FSE’21), reproducible.
 Used in SBFT Fuzzing competitions (since 2023).

 Enabled major advances in industrial fuzzers:
AFL++, LibAFL, LibFuzzer, Honggfuzz, and Centipede.
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Benchmarks induce progress.

 Shonan Meeting: Benchmarking = Top-3 Research Challenge!

* Google’s commitment: Support of the community via FuzzBench.
* Highest standards of experimental design
50+ fuzzers, 150+ experiments for 120+ papers (as of FSE’21), reproducible.
 Used in SBFT Fuzzing competitions

 Enabled major advances in industrial fuzzers:
AFL++, LibAFL, LibFuzzer, Honggfuzz, and Centipede.

e Today, there many other fuzzer benchmark frameworks.
* Magma:
* Fuzztastic:
* UniBench:
* ProFuzzBench:



Benchmarks induce progress.

 Benchmarking to measure progress in all of automation.
* Automated Software Engineering: SWE-Bench, Defects4J, CoREBench.

PR . - 4”3 Abhik Roychoudhury
&"#» Abhik Roychoudhury & G
&:‘«%‘_ y ys % Tech news from Singapore .... AutoCodeRover (now Sonar), our NUS spinoff
% More on AutoCodeRover. and Al Software Engineer from Singapore, is acquired by Sonar, leader in

Our autonomous software engineer from Singapore has been evaluated on code quality solutions.
full SWE-bench, SWE-bench-lite, as well as subsets of SWE-bench on
which other tools have been run. Details below! Let's understand when
each tool works?

PRESS RELEASE:

This constitutes a transition of the Large Language Model Agentic

Success Rates of AutoCodeRover, SWE-Agent, and Devin (%)
25

B ACR (<12 mins)
SWE-Agent (~1.5 mins)
Bl Devin (=10 mins)

22.33

» .." ‘.
AUTOCODEROVER
- JOINS

17.00 ™ SONARSOURCE
‘ -—
: . _

Success Rate (%)

SWE-bench Full SWE-bench Lite SWE-bench Devm Subset




Benchmarks induce progress.

 Benchmarking to measure progress in all of automation.
* Automated Software Engineering: SWE-Bench, Defects4J, CoREBench.
* Automated Cybersecurity: DARPA CGC, AIXCC (8.5 million USD in prizes)

CONGRATULATIONS
FINALISTS

IN ALPHABETICAL ORDER

42-b3yond-6ug
all_you_need is_a_fuzzing brain

Lacrosse

Shellphish

Team Atlanta
Theorl

Trail of Bits




Benchmarks induce progress.

 Benchmarking to measure progress in all of automation.

* Automated Software Engineering: SWE-Bench, Defects4J, CoREBench.
* Automated Cybersecurity: DARPA CGC, AIxCC
 Machine Learning / Artificial Intelligence:

 ARC Challenge

 Most ML/AI conferences have a track to announce new benchmarks.
 Every announcement of a new LLM comes with results on popular benchmarks.

| gptdo olimprovement MMLU Categories

PhD-Level Science Questions AP English Lang 58,0 &) Global Facts CAI 78.4
ML Benchmarks (GPQA Diamond)

AP Physics 2 63.0 ! College Chemistry 689 KX

MATH Chemistry 40.2 64.7 AP English Lit 64.7 (&3 College Mathematics 75.2 98.1

MathVista (testmini) . S— LSAT
Physics 59.5 . S
MMMU (val) 69.1 E—— AP Calculus . Public Relations 76.8 [li

MMLU 88.0 kY3 Biology 1.6 ! AP Chemistry 76.0 : ri 788 EIA

Professional Law 756 ESI0

SAT EBRW 92.8 )8 ormal Logic 79.8 97.0
0 20 40 60 80 100 40 60 80 1(0]0) |

pass@1accuracy pass@1accuracy 0O 20 40 60 80 20 40 60 80 100
eeeee t raw score pass@1accurac




There are limits to benchmarking.

* Does 100% on all currently known ML benchmarks mean AGI?
* Does going from 92% to 95% mean substantial progress?

Every announcement of a new LLM comes with results on popular benchmarks.

| gptdo olimprovement MMLU Categories

PhD-Level Science Questions AP English Lang 5805 Global Facts 35. 78.4
ML Benchmarks (GPQA Diamond) |

AP Physics 2 3.0 ! College Chemistry 68.C 78.1

MATH Chemistry 10.2 64.7 AP English Lit 64.7 [} College Mathematics 98.1

MathVista (testmini) . e LSAT
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MMMU (val) 69, —————— AP Calculus . Public Relations 76.8 [li

MMLU 38.0 : Biology 1.6 : AP Chemistry , ri Y 87 1

Professional Law 756 X6

SAT EBRW 92.8 Ez¥ ormal Logic 79.8 97.0
0 20 40 60 80 100 0 20 40 60 80 100
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There are limits to benchmarking.

* Does 100% on all currently known ML benchmarks mean AGI?

* Does going from 92% to 95% mean substantial progress”?

But in recent months I've spoken to other YC founders doing Al application startups and most of

IQEINIMEVCRE RUEREIN R lde ol IR (oISl 1. 099-pro-ultra announced, 2. Benchmarks look

good, 3. Evaluated performance mediocre. RIURREX CHACRUER G GEIRVR W old @l We Ia{=1=1sl
industries, on different problem sets. Sometimes the founder will apply a cope to the narrative

("We just don't have any PhD level questions to ask"), but the narrative is there.

| have read the studies. | have seen the numbers. Maybe LLMs are becoming more fun to talk to,
maybe they're performing better on controlled exams. But | would nevertheless like to submit,
based off of internal benchmarks, and my own and colleagues' perceptions using these models,
that whatever gains these companies are reporting to the public, they are not reflective of
economic usefulness or generality. They are not reflective of my Lived Experience or the Lived
Experience of my customers. In terms of being able to perform entirely new tasks, or larger

proportions of users' intellectual labor, | don't think they have improved much since August.

INSIGHTS - 18, MIN READ

On Recent Al Model
Progress

Exploring the real-world

effectiveness of Al advancemel

Q Dean Valentine
2025-03-24

Table of Contents

Are the Al labs just cheating?
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Benchmarking Fuzzers

Suppose none of our fuzzers
finds any bugs in our program.

How do we know which fuzzer is better?



Benchmarking Fuzzers Using Coverage

Suppose none of our fuzzers
finds any bugs in our program.

How do we know which fuzzer is better?

We measure code coverage!



Benchmarking Fuzzers Using Coverage

e Key ldea:

* You cannot find bugs in code that is not covered.

* Question:
 How strong is the relationship between coverage and bug finding?

We measure code coverage!



Benchmarking Fuzzers Using Coverage

e Key ldea:

* You cannot find bugs in code that is not covered.

* Question:
 How strong is the relationship between coverage and bug finding?

ICSE’14

Coverage Is Not Strongly Correlated
with Test Suite Effectiveness

Laura Inozemtseva and Reid Holmes
School of Computer Science
University of Waterloo

_ Waterloo, ON, Canada
{Iminozem,rtholmes}@uwaterloo.ca

ABSTRACT

The coverage of a test suite is often used as a proxy for
its ability to detect faults. However, previous studies that
investigated the correlation between code coverage and test
suite effectiveness have failed to reach a consensus about the
nature and strength of the relationship between these test
suite characteristics. Moreover, many of the studies were
done with small or synthetic programs, making it unclear
whether their results generalize to larger programs, and some
of the studies did not account for the confounding influence
of test suite size. In addition, most of the studies were done
with adequate suites, which are are rare in practice, so the
results may not generalize to typical test suites.

1. INTRODUCTION

Testing is an important part of producing high quality
software, but its effectiveness depends on the quality of the
test suite: some suites are better at detecting faults than
others. Naturally, developers want their test suites to be good
at exposing faults, necessitating a method for measuring the
fault detection effectiveness of a test suite. Testing textbooks
often recommend coverage as one of the metrics that can
be used for this purpose (e.g., [29,34]). This is intuitively
appealing, since it is clear that a test suite cannot find bugs
in code it never executes; it is also supported by studies that

have found a relationship between code coverage and fault
detection effectiveness [3,6,14-17,24,31,39].




Benchmarking Fuzzers Using Coverage

e Key ldea:

* You cannot find bugs in code that is not covered.

This s called “correlakion”.

e Question:
* How \ the relationshipjbetween coverage and bug finding?
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of test suite size. In addition, most of the studies were done
with adequate suites, which are are rare in practice, so the
results may not generalize to typical test suites.
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test suite: some suites are better at detecting faults than
others. Naturally, developers want their test suites to be good
at exposing faults, necessitating a method for measuring the
fault detection effectiveness of a test suite. Testing textbooks
often recommend coverage as one of the metrics that can
be used for this purpose (e.g., [29,34]). This is intuitively
appealing, since it is clear that a test suite cannot find bugs
in code it never executes; it is also supported by studies that
have found a relationship between code coverage and fault
detection effectiveness [3,6,14-17,24,31,39].
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e Key ldea:

* You cannot find bugs in code that is not covered.

* Question:

This s called “correlakion”.
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investigated the correlation between code coverage and test
suite effectiveness have failed to reach a consensus about the
nature and strength of the relationship between these test
suite characteristics. Moreover, many of the studies were
done with small or synthetic programs, making it unclear
whether their results generalize to larger programs, and some
of the studies did not account for the confounding influence
of test suite size. In addition, most of the studies were done
with adequate suites, which are are rare in practice, so the
results may not generalize to typical test suites.
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1. INTRODUCTION

Testing is an important part of producing high quality
software, but its effectiveness depends on the quality of the
test suite: some suites are better at detecting faults than
others. Naturally, developers want their test suites to be good
at exposing faults, necessitating a method for measuring the
fault detection effectiveness of a test suite. Testing textbooks
often recommend coverage as one of the metrics that can
be used for this purpose (e.g., [29,34]). This is intuitively
appealing, since it is clear that a test suite cannot find bugs
in code it never executes; it is also supported by studies that

have found a relationship between code coverage and fault
detection effectiveness [3,6,14-17,24,31,39].

* Observation: Test suites with
more coverage find more bugs
only because they are bigger.



Benchmarking Fuzzers Using Coverage

e Key ldea:

* You cannot find bugs in code that is not covered.

This s called “correlakion”.

e Question:
* How \ the relationshipjbetween coverage and bug finding?

ICSE’14
Code Coverage for Suite Evaluation by Developers

Rahul Gopinath Carlos Jensen Alex Groce
Oregon State University Oregon State University Oregon State University
Corvallis, OR, USA _ Corvallis, OR, USA Corvallis, OR, USA
gopinath@eecs.orst.edu cjensen@eecs.orst.edu agroce@gmail.com
ABSTRACT always a trade-off between the cost of (further) testing and

One of the key challenges of developers testing code is deter-
mining a test suite’s quality — its ability to find faults. The
most common approach is to use code coverage as a measure
for test suite quality, and diminishing returns in coverage or
high absolute coverage as a stopping rule. In testing re-
search, suite quality is often evaluated by a suite’s ability
to kill mutants (artificially seeded potential faults). Deter-
mining which criteria best predict mutation kills is critical
to practical estimation of test suite quality. Previous work
has only used small sets of programs, and usually compares
multiple suites for a single program. Practitioners, however,
seldom compare suites — they evaluate one suite. Using
suites (both manual and automatically generated) from a
large set of real-world open-source projects shows that eval-

cadlnn mamealdn D2flne Lo AV s Lot maalbhie mmesnenmal . mbhndoa

the potential cost of undiscovered faults in a program. In
order to make intelligent decisions about testing, developers
need ways to evaluate their testing efforts in terms of their
ability to detect faults. The ability, given a test suite, to
predict whether it is effective at finding faults is essential to
rational testing efforts.

The ideal measure of fault detection is, naturally, fault
detection. In retrospect, using the set of defects discovered
during a software product’s lifetime, the quality of a test
suite could be evaluated by measuring its ability to detect
those faults (faults never revealed in use might reasonably
have little impact on testing decisions). Of course, this is
not a practical method for making decisions during devel-
opment and testing. Software engineers therefore rely on
methods that predict fault detection capability based onlv
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e Key ldea:

* You cannot find bugs in code that is not covered.

- This is called “correlalion”.

e Question:
* How \ the relationshipjbetween coverage and bug finding?

ICSE’14
Code Coverage for Suite Evaluation by Developers

e Observation: Test suites with

o Rahusltc-t‘no ir)ath.tV o CarlgtstJeL?s_en " o AIeS>t< 9r80_e )
This paper finds a correlation between lightweight, widely more coverage find more bugs
available coverage criteria (statement, block, branch, and .
path coverage) and mutation kills for hundreds of Java pro- irrespective of whether they are b|gger_

~grams, for both the actual test suites included with those
projects and suites generated by the Randoop testing tool.
For both original and generated suites, statement coverage
is the best predictor for mutation kills, and in fact does a
relatively good (R* = 0.94 for original tests and 0.72 for
generated tests) job of predicting suite quality. SUT size,
“code complexity, and suite size do not turn out to be im-
portant. A simple model of mutation and mutation detec-
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available coverage criteria (statement, block, branch, and -
path coverage) and mutation kills for hundreds of Java pro- |rrespect|ve Of Whether they are b|gger

~grams, for both the actual test suites included with those
projects and suites generated by the Randoop testing tool.
For both original and generated suites, statement coverage This is called “conkradiction”,
is the best predictor for mutation kills, and in fact does a
relatively good (R* = 0.94 for original tests and 0.72 for
generated tests) job of predicting suite quality. SUT size,
“code complexity, and suite size do not turn out to be im-
portant. A simple model of mutation and mutation detec-
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Benchmarking Fuzzers Using Coverage

e Key ldea:

* You cannot find bugs in code that is not covered.

This s called “correlakion”.

e Question:
* How \ the relationshipjbetween coverage and bug finding?

ASE’20

al. [44]. These papers report contradictory conclusions about:
Revisiting the Relationship Between Fault Detection,

e whether and how test set size should be experimentally con-
Test Adequacy Criteria, and Test Set Size

trolled when assessing the correlation between test set adequacy

Yiqun T. Chen Rahul Gopinath Anita Tadakamalla Michael D. Ernst an : an
University of Washington = CISPA Helmholtz-Zentrum  George Mason University =~ University of Washington d fault dete Ctlon’ d
Seattle, WA, USA Saarbriicken, Germany Fairfax, VA, USA Seattle, WA, USA .
e whether the correlation between test set adequacy and fault
Reid Holmes Gordon Fraser Paul Ammann René Just d . . . N ﬁ d
University of British Columbia  University of Passau George Mason University University of Washington ete Ctlon 1S Slgnl Cant an Str Ong .
Vancouver, BC, Canada Passau, Germany Fairfax, VA, USA Seattle, WA, USA ﬂ . k th ﬂ . h
ABSTRACT Relationship Between Fault Detection, Test Adequacy Criteria, and Test € some preVlouS WOor nOteS €S€ con 1Cts Wlt Out pro-
" e b i ed : ) Set Size. In 35th IEEE/ACM 1 ional C A d Soft P - =
The rescarch community haslong recognized a complexinerre- 5 81 1n SALEERACH Inenstons: e o et viding resolutions, of greater concern is the fact that many other
u(?_ns }I{) 'twccr:hd l ) 'dl:dfonf;lc%l :rc?uac)bcntcn: ‘;ln _tci; New York, NY, USA, 13 pages. https://doiorg/10.1145/3324884.3416667 . . . . .
ek . Fowores these I ssbetintial confuslor Ahouk wikthcr 4 papers simply cite the aforementioned papers without noting the
how to experimentally control for test set size when assessing how 1 INTRODUCTION
e o e e e e ineer - - contradictions. (As of August 2020, Google Scholar reports over 800
when comparing test adequacy criteria. Resolving the confusion, The SOFI“"“_“ ‘“g‘:’cfm‘i .rcs;:rch comhn:umty balfllong recognized ’ > p
this paper makes the following contributions: (1) A review of con- a complex interrelationship between three vanables: . .
tradictory analyses of the relationships between fault detection, e fault detection (the degree to which a test set detects real faults), Cltatlons to these four paper S')
test adequacy criteria, and test set size. Specifically, this paper ad- e test set adequacy (the degree to which a test set satisfies a set of
dresses the supposed contradiction of prior work and explains why test goals, such as statements, branches, or mutants), and
test set size is neither a confounding variable, as previously sug- o test set size (the cardinality of a test set).

wanbad wins am ladacandacd vacdallla o shiaidld s snvnisndicvactalla,



Benchmarking Fuzzers Using Coverage

e Key ldea:

* You cannot find bugs in code that is not covered.

This s called “correlakion”.

e Question:
+ How|strong is the relationship}?

8 CONCLUSIONS

This paper addresses and resolves the contradictions in prior work
that studied the interrelationship between fault detection, test ade-
quacy criteria, and test set size. It explains why test set size is an un-
realistic test objective and neither a confounding variable nor an in-
dependent variable that should be experimentally manipulated. Fur-
thermore, it explains the conceptual and statistical issues that arise
when controlling for test set size via random selection and stratifica-
tion, concluding that the random-selection methodology is flawed.

Additionally, this paper proposes (1) a methodology for compar-

ASE’20

Revisiting the Relationship Between Fault Detection,
Test Adequacy Criteria, and Test Set Size

Yiqun T. Chen Rahul Gopinath Anita Tadakamalla Michael D. Ernst
University of Washington = CISPA Helmholtz-Zentrum  George Mason University =~ University of Washington

Seattle, WA, USA Saarbriicken, Germany Fairfax, VA, USA Seattle, WA, USA

Reid Holmes Gordon Fraser Paul Ammann René Just

University of British Columbia  University of Passau George Mason University University of Washington
Vancouver, BC, Canada Passau, Germany Fairfax, VA, USA Seattle, WA, USA

ABSTRACT

The research community has long recognized a complex interre-
lationship between fault detection, test adequacy criteria, and test
set size. However, there is substantial confusion about whether and
how to experimentally control for test set size when assessing how
well an adequacy criterion is correlated with fault detection and
when comparing test adequacy criteria. Resolving the confusion,

this paper makes the following contributions: (1) A review of con-

tradictory analyses of the relationships between fault detection,

test adequacy criteria, and test set size. Specifically, this paper ad-

dresses the supposed contradiction of prior work and explains why
test set size is neither a confounding variable, as previously sug-

wanbad wins am ladacandacd vacdallla o shiaidld s snvnisndicvactalla,

Relationship Between Fault Detection, Test Adequacy Criteria, and Test
Set Size. In 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE '20), September 21-25, 2020, Virtual Event, Australia. ACM,

New York, NY, USA, 13 pages. https://doiorg/10.1145/3324884.3416667

1 INTRODUCTION
The software engineering research community has long recognized
a complex interrelationship between three variables:

e fault detection (the degree to which a test set detects real faults),

e test set adequacy (the degree to which a test set satisfies a set of

test goals, such as statements, branches, or mutants), and
e test set size (the cardinality of a test set).

ing test adequacy criteria on a fair basis, accounting for test set size
without direct, unrealistic manipulation, and (2) probabilistic cou-
pling, a methodology for approximating the fault-detection proba-
bility of adequate test sets. Using the proposed methodology, this pa-
per concludes that adequacy=based test'selectionis'superiortoran=
domyselection and that mutation-based test selection is most effec-
tive when employed after coverage has exhausted its usefulness.



Correlation: Very strong

e Our experiments confirm a
very strong correlation for
fuzzer-generated test suites!

e As a fuzzer covers more code,
it also finds more bugs.
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Figure 6: Scatter plot of the mean number of bugs found
(on the log-scale) as the mean number of covered branches
increases in the average fuzzing campaign for a benchmark.
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#Branches #Paths  #Edges
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Figure 7: Average correlation (p) between coverage and #bugs
found for all programs where at least one bug was found.




Correlation: Very strong

e Our experiments confirm a
very strong correlation for
fuzzer-generated test suites!

e As a fuzzer covers more code,
it also finds more bugs.

Spearman’s p Interpretation
0.00 - 0.09 Neglible correlation
0.10 - 0.39 Weak correlation
0.40 - 0.69 Moderate correlation
0.70 - 0.89 Strong correlation
0.90 - 1.00 Very strong correlation
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found for all programs where at least one bug was found.
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ABSTRACT Greybox

For any errorless fuzzing campaign, no matter how long, there is
always some residual risk that a software error would be discovered
if only the campaign was run for just a bit longer. Recently, greybox
fuzzing tools have found widespread adoption. Yet, practitioners can
only guess when the residual risk of a greybox fuzzing campaign
falls below a specific, maximum allowable threshold.

In this paper, we explain why residual risk cannot be directly
estimated for greybox campaigns, argue that the discovery proba-
bility (i.e., the probability that the next generated input increases
code coverage) provides an excellent upper bound, and explore
sound statistical methods to estimate the discovery probability in
an ongoing greybox campaign. We find that estimators for blackbox
fuzzing systematically and substantially under-estimate the true
risk. An engineer—who stops the campaign when the estimators
purport a risk below the maximum allowable risk—is vastly misled.
She might need execute a campaign that is orders of magnitude
longer to achieve the allowable risk. Hence, the key challenge we
address in this paper is adaptive bias: The probability to discover a
specific error actually increases over time. We provide the first prob-
abilistic analysis of adaptive bias, and introduce two novel classes
of estimators that tackle adaptive bias. With our estimators, the
engineer can decide with confidence when to abort the campaign.
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1 INTRODUCTION

On the one hand, we have software verification which allows to
demonstrate the correctness of the program for all inputs. On the
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Figure 1: In greybox fuzzing, the probability py,,, to generate
a bug-revealing input (dashed line) increases as n increases.
The probability A(n) that the (n+ 1)-th input is coverage-
increasing (solid line) provides an upper bound on the prob-
ability (residual risk) that it is the first bug-revealing input.
The vertical line is when we expect the first bug-rev. input.

correctness of the program only for some inputs. While verifica-
tion provides much stronger correctness guarantees, it is greybox
fuzzing, a specific form of software testing, which has found wide-
spread adoption in industry [24-26].

From a fuzzing campaign that has found no bugs, can we derive
some statement about the correctness of the program? Fuzzing
being a random process, it should be possible to derive statistical
claims about the probability that the next generated input is the
first bug-revealing input. We call this probability the residual risk.
We know how to quantify residual risk for whitebox fuzzing (using
model counting) [10] and blackbox fuzzing (using estimation) [1],
but not for greybox fuzzing—which has emerged as the state-of-
the-art in automated vulnerability discovery.

Greybox fuzzing is subject to adaptive bias, i.e., the probability
to generate a bug-revealing input actually increases throughout the
fuzzing campaign.! Figure 1 shows simulation results for greybox
fuzzing. As more seeds become available, the bug probability ppye
increased (dashed line). In contrast, blackbox fuzzing is not subject
to adaptive bias and the probability to generate a bug-revealing
input remains constant throughout the campaign. If this was the
case for greybox fuzzing, we could cast residual risk estimation as
a sunrise problem? and employ the well-known Laplace estimator.
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ABSTRACT

The missing mass refers to the proportion of data points in an unknown popula-
tion of classifier inputs that belong to classes not present in the classifier’s training
data, which is assumed to be a random sample from that unknown population. We
find that in expectation the missing mass is entirely determined by the number
fr of classes that do appear in the training data the same number of times and
an exponentially decaying error. While this is the first precise characterization
of the expected missing mass in terms of the sample, the induced estimator suf-
fers from an impractically high variance. However, our theory suggests a large
search space of nearly unbiased estimators that can be searched effectively and
efficiently. Hence, we cast distribution-free estimation as an optimization prob-
lem to find a distribution-specific estimator with a minimized mean-squared error
(MSE), given only the sample. In our experiments, our search algorithm discovers
estimators that have a substantially smaller MSE than the state-of-the-art Good-
Turing estimator. This holds for over 93% of runs when there are at least as many
samples as classes. Our estimators’ MSE is roughly 80% of the Good-Turing

estimator’s.

1 INTRODUCTION

How can we extrapolate from properties of the training data to properties of the unseen, underlying
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The Magic of Statistics for Software Testing: How to Foresee
the Unseen

Ensuring software correctness is essential as software increasingly governs critical aspects of modern life. Formal methods for program
verification, while powerful, often struggle with scalability when faced with the complexity of modern systems. Meanwhile, software

testing—finding defects by executing the program—is practical but inherently incomplete, as it inevitably misses certain behaviors, i.e.,
the “unseens,” leaving critical gaps in verification. -l ///// i /ﬂ i

In this tutorial, | illuminate the transformative potential of statistical methods in addressing these challenges, with a particular focus on S eon g m i n L ee
residual risk analysis. Residual risk analysis quantifies the likelihood of undiscovered bugs remaining in the software after testing by

estimating the probability of finding a new, previously unseen bug in the next test input. M P | = S P

We will begin by demonstrating how statistical estimators can assess residual risk using records from software testing—such as code
coverage data—through a hands-on example. The tutorial then explores several advanced extensions to adapt residual risk analysis for
more realistic testing scenarios. By the end of this session, participants will gain a deeper understanding of how statistical thinking can

provide actionable insights into the unseen behaviors of software systems, ultimately making testing more accountable, transparent,
and efficient.
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* Fuzzing folks are still not convinced
that coverage is a good measure.
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* Fuzzing folks are still not convinced
that coverage is a good measure.

"We cannct compare two
or more fuzzers in kerms
of coverage in order to
establish one as the best in
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Evaluating Fuzz Testing
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ABSTRACT Why do we think fuzzers work? While inspiration for new ideas

Fuzz testing has enjoyed great success at discovering security criti-
cal bugs in real software. Recently, researchers have devoted sig-
nificant effort to devising new fuzzing techniques, strategies, and
algorithms. Such new ideas are primarily evaluated experimentally
so an important question is: What experimental setup is needed
to produce trustworthy results? We surveyed the recent research
literature and assessed the experimental evaluations carried out
by 32 fuzzing papers. We found problems in every evaluation we
considered. We then performed our own extensive experimental
evaluation using an existing fuzzer. Our results showed that the
general problems we found in existing experimental evaluations
can indeed translate to actual wrong or misleading assessments. We
conclude with some guidelines that we hope will help improve ex-
perimental evaluations of fuzz testing algorithms, making reported
results more robust.

may be drawn from mathematical analysis, fuzzers are primarily
evaluated experimentally. When a researcher develops a new fuzzer
algorithm (call it A), they must empirically demonstrate that it
provides an advantage over the status quo. To do this, they must
choose:

e a compelling baseline fuzzer B to compare against;

e a sample of target programs—the benchmark suite;

e a performance metric to measure when A and B are run on
the benchmark suite; ideally, this is the number of (possibly
exploitable) bugs identified by crashing inputs;

e a meaningful set of configuration parameters, e.g., the seed
file (or files) to start fuzzing with, and the timeout (i.e., the
duration) of a fuzzing run.
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Correlation: Very strong

One solution is to instead (or also) measure the improvement in
code coverage made by fuzzer A over baseline B. Greybox fuzzers
already aim to optimize coverage as part of the isInteresting
function, so surely showing an improved code coverage would
indicate an improvement in fuzzing. This makes sense. To find a
crash at a particular point in the program, that point in the program
would need to execute. Prior studies of test suite effectiveness also
suggest that higher coverage correlates with bug finding effective-
ness [19, 30]. Nearly half of the papers we considered measured
code coverage; FairFuzz only evaluated performance using code
(branch) coverage [32].

However, there is no fundamental reason that maximizing code
coverage is directly connected to finding bugs. While the general
efficacy of coverage-guided fuzzers over black box ones implies
that there’s a strong correlation, particular algorithms may eschew
higher coverage to focus on other signs that a bug may be present.
For example, AFLGo [5] does not aim to increase coverage globally,
but rather aims to focus on particular, possibly error-prone points
in the program. Even if we assume that coverage and bug finding
are correlated, that correlation may be weak [28]. As such, a sub-
stantial improvement in coverage may yield merely a negligible
improvement in bug finding effectiveness.
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Common pitfalls in statistical analysis: Measures of
agreement
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Abstract Agreement between measurements refers to the degree of concordance between two (or more) sets of
measurements. Statistical methods to test agreement are used to assess inter-rater variability or to decide
whether one technique for measuring a variable can substitute another. In this article, we look at statistical

measures of agreement for different types of data and discuss the differences between these and those
for assessing correlation.

Keywords: Agreement, biostatistics, concordance
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INTRODUCTION

Often, one is interested in knowing whether measurements
made by two (sometimes more than two) different
observers or by two different techniques produce similar
results. This is referred to as agreement or concordance
or reproducibility between measurements. Such analysis
looks at pairs of measurements, either both categorical or
both numeric, with each pair having been made on one
individual (or a pathology slide, or an X-ray).

Superficially, these data may appear to be amenable to
analysis using methods used for 2 X 2 tables (if the variable
is categorical) or correlation (if numeric), which we have
discussed previously in this series."”) However, a closer
look would show that this is not true. In those methods,

two measurements relate to the same variable (e.g, chest
radiographs rated by two radiologists or hemoglobin
measured by two methods).

WHAT IS AGREEMENT?

Let us consider the case of two examiners A and B
evaluating answer sheets of 20 students in a class and
marking each of them as “pass” or “fail,” with each
examiner passing half the students. Table 1 shows three
different situations that may happen. In situation 1 in this
table, eight students receive a “pass” grade from both
the examiners, eight receive a “fail” grade from both the
examiners, and four receive pass grade from one examiner
but “fail” grade from the other (two passed by A and
the other two by B). Thus, the two examiners’ results

1 o~ N b sm Py

POINTS TO REMEMBER

Correlation versus agreement

As alluded to above, correlation is not synonymous
with agreement. Correlation refers to the presence of
a relationship between two different variables, whereas
agreement looks at the concordance between two
measurements of one variable. Two sets of observations,
which are highly correlated, may have poor agreement;
however, if the two sets of values agree, they will surely
be highly correlated. For instance, in the hemoglobin
example, even though the agreement is poor, the
correlation coefficient between values from the two
methods 1s high [Figure 2]; (» = 0.98). The other way to
look at it is that, though the individual dots are not fairly
close to the dotted line (least square line;” indicating good
correlation), these are quite far from the solid black line,
which represents the line of perfect agreement (Figure 2:
the solid black line). In case of good agreement, the dots
would be expected to fall on or near this (the solid black)

line.



Agreement: That’s why.

Statistics

Common pitfalls in statistical analysis: Measures of

agreement

Priya Ranganathan, C. S. Pramesh’, Rakesh Aggarwal®

Departments of Anaesthesiology and *Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, 2Department of Gastroenterology,
Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Abstract Agreement between measurements refers to the degree of concordance between two (or more) sets of

measurements. Statistical methods to test agreement are used to assess inter-rater variability or to decide

whether one technique for measuring a variable can substitute another. In this article, we look at statistical
measures of agreement for different types of data and discuss the differences between these and those

for assessing correlation.

Keywords: Agreement, biostatistics, concordance

Address for correspondence: Dr. Priya Ranganathan, Department of Anaesthesiology, Tata Memorial Centre, Ernest Borges Road, Parel, Mumbai - 400 012,

Maharashtra, India.
E-mail: drpriyaranganathan@gmail.com

INTRODUCTION

Often, one is interested in knowing whether measurements
made by two (sometimes more than two) different
observers or by two different techniques produce similar
results. This is referred to as agreement or concordance
or reproducibility between measurements. Such analysis
looks at pairs of measurements, either both categorical or
both numeric, with each pair having been made on one
individual (or a pathology slide, or an X-ray).

Superficially, these data may appear to be amenable to
analysis using methods used for 2 X 2 tables (if the variable
is categorical) or correlation (if numeric), which we have
discussed previously in this series."” However, a closer
look would show that this is not true. In those methods,

two measurements relate to the same variable (e.g., chest
radiographs rated by two radiologists or hemoglobin
measured by two methods).

WHAT IS AGREEMENT?

Let us consider the case of two examiners A and B
evaluating answer sheets of 20 students in a class and
marking each of them as “pass” or “fail,” with each
examiner passing half the students. Table 1 shows three
different situations that may happen. In situation 1 in this
table, eight students receive a “pass” grade from both
the examiners, eight receive a “fail” grade from both the
examiners, and four receive pass grade from one examiner
but “fail” grade from the other (two passed by A and
the other two by B). Thus, the two examiners’ results

a »» 1 - a = 1 ~ PN N

320

Temp.“C 10 210 30
\
0 \'\/, 40

N\

N2

Griffin. pH Meter Model 60

“lh

e Suppose, we have
Two Instruments to measure acidity.



Agreement: That’s why.

. EFE

Common pitfalls in statistical analysis: Measures of o oG 10N
o A\'\N/, 40
N e

agreement Ext. a 55 mV

Priya Ranganathan, C. S. Pramesh’, Rakesh Aggarwal® - 60

Departments of Anaesthesiology and *Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, 2Department of Gastroenterology,
Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

| ~\
70
80

Buffer
N\

Abstract Agreement between measurements refers to the degree of concordance between two (or more) sets of
measurements. Statistical methods to test agreement are used to assess inter-rater variability or to decide
whether one technique for measuring a variable can substitute another. In this article, we look at statistical
measures of agreement for different types of data and discuss the differences between these and those
for assessing correlation. %&;

Griffin. pH Meter Model 60

Keywords: Agreement, biostatistics, concordance

|

Address for correspondence: Dr. Priya Ranganathan, Department of Anaesthesiology, Tata Memorial Centre, Ernest Borges Road, Parel, Mumbai - 400 012,
Maharashtra, India.
E-mail: drpriyaranganathan@gmail.com

- S * Two instruments to measure acidity.

radiographs rated by two radiologists or hemoglobin
Often, one is interested in knowing whether measurements measured by two methods).

made by two (sometimes more than two) different WHAT 1S AGREEVENT? ® St rO n g CO rre I at I O n :

observers or by two different techniques produce similar
results. This is referred to as agreement or concordance

or reproducibilitv between measurements. Such analvsis 1€t us consider the case of two examiners A and B BT " " :
lookspat pairs oft}rrrleasurements, either both categorica{ or evalu?ting answer sheets of 20 students %n a c.lass and ° M Ore aCId Ity — bOth Ind ICate h Ig her P H Val ues .
marking each of them as “pass” or “fail,” with each
examiner passing half the students. Table 1 shows three
different situations that may happen. In situation 1 in this
table, eight students receive a “pass” grade from both
the examiners, eight receive a “fail” grade from both the
examiners, and four receive pass grade from one examiner
but “fail” grade from the other (two passed by A and
the other two by B). Thus, the two examiners’ results

a 2 1 mn Py

both numeric, with each pair having been made on one
individual (or a pathology slide, or an X-ray).

Superficially, these data may appear to be amenable to
analysis using methods used for 2 X 2 tables (if the variable
is categorical) or correlation (if numeric), which we have
discussed previously in this series."” However, a closer

look would show that this is not true. In those methods,

a »» 1 -



Agreement: That’s why.

330

Common pitfalls in statistical analysis: Measures of o oG 10N
A\
agreement SRR
=Xt af 50 mV_,
Priya Ranganathan, C. S. Pramesh’, Rakesh Aggarwal? : y =60

N

70

Departments of Anaesthesiology and *Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, 2Department of Gastroenterology,

Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India Buffe
uffer

Abstract Agreement between measurements refers to the degree of concordance between two (or more) sets of
measurements. Statistical methods to test agreement are used to assess inter-rater variability or to decide
whether one technique for measuring a variable can substitute another. In this article, we look at statistical
measures of agreement for different types of data and discuss the differences between these and those
for assessing correlation. %i

Griffin. pH Meter Model 60

Keywords: Agreement, biostatistics, concordance

Address for correspondence: Dr. Priya Ranganathan, Department of Anaesthesiology, Tata Memorial Centre, Ernest Borges Road, Parel, Mumbai - 400 012,
Maharashtra, India.
E-mail: drpriyaranganathan@gmail.com

- S * Two instruments to measure acidity.

radiographs rated by two radiologists or hemoglobin
Often, one is interested in knowing whether measurements measured by two methods).

e e T et WHAT I8 AGREEMENT? » Strong correlation:

results. This is referred to as agreement or concordance

ST - Let us consider the case of two examiners A and B

or reproducibility between measurements. Such analysis ' _ P _ - - -
looks at pairs of measurements, either both categorical or evalufitmg answer sheets of 20 students n a c.lass and ° M O re aC I d Ity - bOt h I n d ICate h Ig h er P H Val u es .
marking each of them as “pass” or “fail,” with each
examiner passing half the students. Table 1 shows three
different situations that may happen. In situation 1 in this ® W k m 't =
table, eight students receive a “pass” grade from both ea ag ree en =
analysis using methods used for 2 X 2 tables (if the variable the cxaminers, cight fecelve a “fail” grade from both.the
examiners, and four receive pass grade from one examiner

is categorical) or correlation (if numetic), which we have but “fail” grade from the other (two passed by A and o BOth i nStru ments m ig ht ran k 2 -+ tu beS d iﬁe rently_

discussed previously in this series."” However, a closer o
the other two by B). Thus, the two examiners’ results

a »» 1 -

both numeric, with each pair having been made on one
individual (or a pathology slide, or an X-ray).

Superficially, these data may appear to be amenable to

look would show that this is not true. In those methods,

a 2 1 mn Py



Agreement: That’s why.

330

Common pitfalls in statistical analysis: Measures of o oG 10N
NN
agreement T ///,"ZO 4
— = LA
‘ : a?so

Priya Ranganathan, C. S. Pramesh’, Rakesh Aggarwal®

N

70

Departments of Anaesthesiology and *Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, 2Department of Gastroenterology,

Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India Buffe
uffer

Abstract Agreement between measurements refers to the degree of concordance between two (or more) sets of
measurements. Statistical methods to test agreement are used to assess inter-rater variability or to decide
whether one technique for measuring a variable can substitute another. In this article, we look at statistical
measures of agreement for different types of data and discuss the differences between these and those
for assessing correlation. %i

Griffin. pH Meter Model 60

Keywords: Agreement, biostatistics, concordance

Address for correspondence: Dr. Priya Ranganathan, Department of Anaesthesiology, Tata Memorial Centre, Ernest Borges Road, Parel, Mumbai - 400 012,
Maharashtra, India.
E-mail: drpriyaranganathan@gmail.com

INTRODUCTION two measurements relate to the same variable (e.g., chest M O dﬁ?&&é QS reem QM& m e& M s

radiographs rated by two radiologists or hemoglobin
Often, one is interested in knowing whether measurements measured by two methods). 4

made by two (sometimes more than two) different ¢ MQ &QMMO% rQL Ev&bivj Subs %Eﬁ&%ﬁa

observers or by two different techniques produce similar ~ WHAT IS AGREEMENT? '

results. This is referred to as agreement or concordance ' _ > E ; & %h &h
or reproducibility between measurements. Such analysis Let us consider the case of two examiners A and B ', OMQ LMS rum em ﬁFOr e 0 erﬂ

evaluating answer sheets of 20 students in a class and {
marking each of them as “pass” or “fail,” with each Nomsasne o A SO s N A BT I LS A Al SRS A S I SNBSS AN S
examiner passing half the students. Table 1 shows three

different situations that may happen. In situation 1 in this ® W k m 't =
table, eight students receive a “pass” grade from both ea ag ree en m

the examiners, eight receive a “fail” grade from both the

looks at pairs of measurements, either both categorical or
both numeric, with each pair having been made on one
individual (or a pathology slide, or an X-ray).

Superficially, these data may appear to be amenable to
analysis using methods used for 2 X 2 tables (if the variable ' ) .
examiners, and four receive pass grade from one examiner

is categorical) or correlation (if numetic), which we have but “fail” grade from the other (two passed by A and o BOth i nStru ments m ig ht ran k 2 -+ tu beS d iﬁe rently_

discussed previously in this series."” However, a closer

the other two by B). Thus, the two examiners’ results

a 2 1 mn Py

look would show that this is not true. In those methods,

a »» 1 -
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Agreement: Coverage vs Bug Finding

* 10 fuzzers x 24 random open source projects x 23h x 20 trials
* \We observe a moderate agreement on superiority or ranking.

* Only if we require differences in coverage *and* bug finding to
be highly statistically significant, we observe a strong agreement.

You can substibube
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Search-Based and Fuzz Testing

(SBFT)'23

Fuzzing Competition

o

Abhishek Arya Dongge Liu
GOOGLE, USA GOOGLE, USA

Jonathan Metzman

GOOGLE, USA

Marcel B6hme

MAX PLANCK INSTITUTE FOR
SECURITY AND PRIVACY, GERMANY

e Promote innovative fuzzers in software vulnerability discovery

e Encourage developers and researchers to present and discuss their work

e Contribute a free and easy-to-use infrastructure for the community

53 Benchmarks

Oliver Chang

GOOGLE, USA
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Don’t measure coverage. Measure bugs?

* Posthoc bug-based evaluation

 Choose a random, representative sample of programs and fuzz them.
* (Un)fortunately, bugs are very sparse. No statistical power.
 Maximize bug probability to for economical reasons.

 |dentify and deduplicate bugs *after* the fuzzing campaign. Minimizes bias.
* Problem: Less economical (we did not find bugs in 7/24 [30%] programs).



Don’t measure coverage. Measure bugs?

 Mutation-based evaluation
* |nject synthetic bugs into a random, representative sample of programs
 More economical. We know many bugs can be found.
* Problem: Are synthetic bugs representative of real bugs?



Don’t measure coverage. Measure bugs?

* Ground-truth-based evaluation
* Curate real bugs in a random, representative sample of programs.
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Don’t measure coverage. Measure bugs?

 Ground-truth-based evaluation

* Curate real bugs in a random, representative sample of programs.

 Economical, realistic bugs, objective ground truth.
* Problem:

1. Survivorship bias

* Fuzzers that are better at finding previously
undiscovered bugs appear worse.

* Fuzzers that contributed to the original
discovery appear better.




Don’t measure coverage. Measure bugs?

 Ground-truth-based evaluation

* Curate real bugs in a random, representative sample of programs.
 Economical, realistic bugs, objective ground truth.

17 October 2019

* Problem: When Results Are All That Matters:
1. Survivorship bias Consequences
2_ ConfirmatiOn b|aS by Andreas Zeller and Sascha Just; with Kai Greshake
* Given a ground truth benchmark, 6. Researchers must resist the temptation of
researchers might be enticed optimizing their tools towards a specific
. . . benchmark.
to iteratively and unknowingly
tune their fuzzer -to the benChmark. While developing an approach, it is only natural to try it out on some

examples to assess its performance, such that results may guide further
refinement. The risk of such guidance, however, is that development may
result in overspecialization - i.e., an approach that works well on a
benchmark, but not on other programs. As a result, one will get a paper
without impact and a tool that nobody uses.
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On the Reliability of Coverage-Based Fuzzer Benchmarking

Marcel Bohme Laszlo Szekeres Jonathan Metzman
MPI-SP, Germany Google, USA Google, USA
Monash University, Australia
ABSTRACT 10 eoee o000 o @ @ oo oo
, 3@ o0 o000 3 1@ 000000
Given a program where none of our fuzzers finds any bugs, how do e o0 o0cee . o ecececee
we know which fuzzer is better? In practice, we often look to code 00 000 ee 5] e o eeee0ee0e
coverage as a proxy measure of fuzzer effectiveness and consider £ eee0eo0ooe0 fe0000000
the fuzzer which achieves more coverage as the better one. z°1® ©0eee0 o0 '] 00006 o000
Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we A AR AR AhAh 40 A A Ak 4 AR dbdbdb bR AREL b
find that a fuzzer that covers more code also finds more bugs. There P rYeree ¢ Ribdb AR AR 4R AR AREA AL ¢
, , , 0 0000 O 20 0000 06
is a very strong correlation between the coverage achieved and the o ele e ¢ oo e e ele 06 6 e
number Of bugS found by a fuzzer° Hence’ lt mlght secm reasonable 1 quzzerSRan:s byng. #?branghem?overgd b 1 F2uzzer3Ranljs byng.#?branghesgover:d b
to compare fuzzers in terms of coverage achieved, and from that
p g #benchmarks “ #benchmarks “

derive empirical claims about a fuzzer’s superiority at finding bugs.

Curiously enough, however, we find no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at finding bugs.

ACM Reference Format:

Marcel Bohme, Laszl6 Szekeres, and Jonathan Metzman. 2022. On the Relia-
bility of Coverage-Based Fuzzer Benchmarking. In 44th International Confer-
ence on Software Engineering (ICSE "22), May 21-29, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510230

1 INTRODUCTION

0 2 4 6 8 10 0 2 4 6 8 10

(a) 1 hour fuzzing campaigns (p = 0.38). (b) 1 day fuzzing campaigns (p = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug finding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average

Measures are specific, our claims general.

Jonathan Metzman
Google
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Google



TOSEM’25

Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties

DYLAN WOLFF, National University of Singapore, Singapore
MARCEL BOHME, Max Planck Institute for Security and Privacy, Germany
ABHIK ROYCHOUDHURY, National University of Singapore, Singapore

In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the specific characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen differently, the same fuzzers may be ranked differently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the specific properties on the benchmarking outcome. This allows us to report the benchmarking

outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our first methodology

is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.

The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
different effects this property has on various fuzzers. However, due to the large number of properties and the difficulty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive

picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer

developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer effectiveness.

We instantiate each approach on a subset of properties suspected of impacting the relative effectiveness of fuzzers and quantify the
effects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial

seed-corpus and the program execution speed, which can have statistically significant effect on the relative effectiveness of fuzzers.

Benchmarks are specific, our claims general.

-

Dylan Wolff
NUS

Abhik Roychoudhury
NUS
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* Observation:
* On the average, most fuzzers perform similarly.



e Observation:

* On the average, most fuzzers perform similarly.

Avg. rank: 6+1.5

aflplusplus optimal
afl

honggfuzz

aflsmart

entropic

mopt

Source: 2020 Sample Fuzzbench Report (https://www.fuzzbench.com/reports/sample/index.html)

Benchmarks are specific, our claims general.

eclipser
aflfast
fairfuzz
libfuzzer
lafintel



Benchmarks are specific, our claims general.

e Observation:
* On the average, most fuzzers perform similarly.
* For each specific program, there are clear winners.



Benchmarks are specific, our claims general.

e Observation:
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* For each specific program, there are clear winners.
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e Observation:

* On the average, most fuzzers perform similarly.
* For each specific program, there are clear winners.

bloaty fuzz target (23h, 15 trials/fuzzer)
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9000 - — mopt
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~— fairfuzz
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entropic
—— — libfuzzer
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Benchmarks are specific, our claims general.

By avg. score

average normalized score

* Observation:
* On the average, most fuzzers perform similarly.

fuzzer

aflplusplus_optimal 98.61

* For each specific program, there are clear winners.

 Atomistic benchmarking doesn’t show that, e.qg.,
the ranking of AFL++ improves on larger programs. ™™

eclipser 76.68
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* \We realize that the specific benchmark outcome
IS a function of the specific benchmark properties.

* \We propose a counterfactual analysis
* to report the conditions under which the benchmark outcome would change.
e to quantify the impact of a change in a benchmark property on the outcome.

« Experiment: Original outcome  Alternative outcome
(Started on AFL-generated seeds) (Started on LibFuzzer-generated seeds)
Vianipulate one property. 1. Entropic 1. AFL++
* Report difference in ranking. 2. LibFuzzer __— 2. Entropic
3. AFL++ = 3. AFL

4. AFL 4. LibFuzzer
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* \We realize that the specific benchmark outcome
IS a function of the specific benchmark properties.

* \We propose a counterfactual analysis
* to report the conditions under which the benchmark outcome would change.
e to quantify the impact of a change in a benchmark property on the outcome.

e Randomization:

 Manipulate many properties. R=a+ + +

Z piXi

y o eP

2.7 Y

f€F

Z Z a)i,in Yf

Pi eP fGF

 Report multiple linear regression.
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* \We realize that the specific benchmark outcome
IS a function of the specific benchmark properties.

* \We propose a counterfactual analysis
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IS a function of the specific benchmark properties.
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Benchmark Config 1 Benchmark Config 2 Benchmark Config 3 Benchmark Config 4 Official FB Config

| Low Initial Coverage | Low Initial Coverage — Median Initial Coverage T High Initial Coverage - Static seed set

| Small Programs T Large Programs — Median Sized Programs T Large Programs used by Fuzzbench

| Small and Fast Seeds | Small and Fast Seeds — Median Size and Speed Seeds T Large and Slow Seeds in all prior work

1. Entropic 1. AFL++ 1. AFL++ 1. AFL++ 1./ 2. AFL++ / Entropic
LibFuzzer Entropic 2. Entropic 2. Entropic 2./ 3. Entropic / AFL

3. AFL++ 3. AFL 3. LibFuzzer AFL

4. AFL LibFuzzer 4. AFL 4. LibFuzzer 4.  LibFuzzer

Fig. 6. (left) Benchmarking outcomes at various levels of program and corpus properties (significant at bootstrapped 95% Cl), (right)
Benchmarking outcome from the Fuzzbench default corpora (significant at p < 0.05, Mann-Whitney U-test)
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 What did we learn?
* Your benchmarking outcome is specific to your benchmark ¢

* Jechnigues might seem to perform similar on the average in:t
Atomistic benchmarking hides the strengths of individual tec

NUS
e Recommendation:

 Conduct a counterfactual analysis to report the conditions u
benchmark outcome changes.

Abhik Roychoudhury
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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the specific characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen differently, the same fuzzers may be ranked differently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the specific properties on the benchmarking outcome. This allows us to report the benchmarking

outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our first methodology

is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.

The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
different effects this property has on various fuzzers. However, due to the large number of properties and the difficulty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive

picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer

developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer effectiveness.

We instantiate each approach on a subset of properties suspected of impacting the relative effectiveness of fuzzers and quantify the
effects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial

seed-corpus and the program execution speed, which can have statistically significant effect on the relative effectiveness of fuzzers.

Benchmarks are specific, our claims general.

-

Dylan Wolff
NUS

Abhik Roychoudhury
NUS
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Top Score on the Wrong Exam: On Benchmarking in Machine
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According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past five years define ML4VD as a function-level binary classification problem:

Given a function, does it contain a security flaw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often first want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security flaw and confirmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We find that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We find that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-defined and call into question the
internal validity of this growing body of work. Constructively, we call for more effective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: « Security and privacy — Software and application security; « Software and its engi-
neering — Software testing and debugging; - Computing methodologies — Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction

In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD defined and thus evaluated?

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTISSTA018

https://doi.org/10.1145/3728887

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA018. Publication date: July 2025.

Uncovering the Limits of Machine Learning
for Automatic Vulnerability Detection

Niklas Risse
MPI-SP. Germany

Abstract

Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f, ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
MLAVD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12-15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

Marcel Bohme
MPI-SP. Germany

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2,21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2,5,18,30,35,38,39,41,42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
MLA4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5, 18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose

Niklas Risse
MPI-SP

FSE’23 Student Research Competition
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ABSTRACT

Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function f, models trained by machine learning techniques
can decide if f contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS

« Computing methodologies — Neural networks; « Software
and its engineering — Software testing and debugging.
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machine learning, automatic vulnerability detection, semantic pre-
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1 INTRODUCTION

Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5-8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17-20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15-20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16-20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used
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Table 2: Classification accuracies and F1 scores in percentages: The two far-right columns give
model with the

the maximum and average relative difference in accuracy/F1 compared to
composite code representations, 1.€., -(Composite).

Method Linux Kernel QEMU Wireshark FFmpeg Combined Max Diff Avg Diff
ACC Fl ACC Fl ACC Fl ACC Fl ACC Fl ACC Fl1 | ACC Fl

Metrics + Xgboost [ 67.17 79.14 | 59.49 61.27 |70.39 61.31 (67.17 63.76 [61.36 63.76 | 14.84 11.80| 10.30 8.71
3-layer BiLSTM 67.25 80.41 |57.85 57.75 [69.08 55.61 |53.27 69.51 [59.40 65.62 |16.48 15.32(14.04 8.78
3-layer BILSTM + Att | 75.63 82.66 | 65.79 59.92 | 74.50 58.52 |61.71 66.01 [69.57 68.65 | 854 13.15( 5.97 7.41
CNN 70.72 779.55 [ 60.47 59.29 |70.48 58.15 [53.42 66.58 [63.36 60.13 |16.16 13.78 | 11.72 9.82
(AST) 72.65 81.28 | 70.08 66.84 |79.62 64.56 (63.54 70.43 [67.74 64.67 | 6.93 859 | 4.69 5.01

(CFG) 78.79 82.35 |71.42 67.74 |79.36 65.40 (65.00 71.79 [70.62 70.86 | 458 5.33 | 2.38 2.93

(NCS) 78.68 81.84 [72.99 69.98 |78.13 59.80 |65.63 69.09 |70.43 69.86 [ 3.95 8.16 | 2.24 4.45
DFG_C) 70.53 81.03 |1 69.30 56.06 |73.17 50.83 |63.75 69.44 [65.52 64.57 | 9.05 17.13| 6.96 10.18
DFG_R) 72.43 80.39 | 68.63 56.35 [74.15 52.25 |63.75 71.49 (66.74 6291 | 7.17 16.72 | 6.27 9.88
DFG_W) 71.09 81.27 | 71.65 65.88 [72.72 51.04 [64.37 70.52 |63.05 63.26 | 9.21 1692 | 6.84 8.17
omposite) |[74.55 79.93 [72.77 66.25 |78.79 67.32 |64.46 70.33 (70.35 69.37 | 5.12 6.82 | 3.23 3.92

(AST) 80.24 84.57 |71.31 65.19 |79.04 64.37 |165.63 71.83 |69.21 69.99 [ 3.95 7.88 | 2.33 3.37

(CFG) 80.03 8291 |74.22 70.73 [79.62 66.05 [66.89 70.22 (71.32 71.27 | 2.69 333 | 1.00 2.33

(NCS) 79.58 81.41 [72.32 68.98 |79.75 65.88 |67.29 68.89 |70.82 68.45 [ 2.29 481 | 1.46 3.84

DFG_C) 78.81 83.87 | 72.30 70.62 |79.95 66.47 [65.83 70.12 |69.88 70.21 | 3.75 343 | 2.06 2.30
DFG_R) 78.25 80.33 | 73.77 70.60 | 80.66 66.17 [66.46 72.12 [71.49 7092 | 3.12 464 | 1.29 2.53

FG_W) [78.70 84.21 |72.54 71.08 [80.59 66.68 |67.50 70.86 |71.41 71.14 | 2.08 2.69 | 1.27 1.77

omposite) |79.58 84.97 | 74.33 73.07 | 81.32 67.96 | 69.58 73.55 |72.26 73.26 - - - -
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Benchmarking confirms effectiveness.
What about its limits?

* Experimental Setup:

» Dataset: CodeXGLUE/Devign (45.6% vulnerable functions).
» 6 SOTA ML4VD approaches (mostly LLMs, one graph-based).
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ML Technique @ @

USENIX SEC’24



Benchmarking confirms effectiveness.
What about its limits?

» ML4VD
1
0
curs
accuracy

USENIX SEC’24




Benchmarking confirms effectiveness.
What about its limits?

« ML4VD

Niklas: If ML4VD %@.«r’:hn&qu@.s Can p
vuimero\bii.&v . Ehej should withstand
semantic preserving changes, right?
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« ML4VD — but testing is amplified with semantic-preserving changes
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Benchmarking confirms effectiveness.
What about its limits?

« ML4VD — but testing is amplified with semantic-preserving changes

vutv\erabd.i;&v, but something else malees it
predict the vulnerability label correctly,

x Test failed: Not the semantic cause of the
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Benchmarking confirms effectiveness.
What about its limits?

e ML4VD — Robustified

Amplified Amplified
3 Training Data Testing Data

ML Technique @ @
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Benchmarking confirms effectiveness.
What about its limits?

e ML4VD — Robustified

Amplified Amplified
3 Training Data Testing Data

| 70%
ML Technique
dCCUuracy
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Benchmarking confirms effectiveness.
What about its limits?

e ML4VD — Robustified

Niklas: If ML4VD technigues are
robust against all F?er%u,r akions,
they should withstand

specific perturbations.
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Benchmarking confirms effectiveness.
What about its limits?

* ML4VD — Robustified + testing is amplified *hold-one-out™

Amplified Amplified
4 Training Data Testing Data

ML Technique @ @
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Benchmarking confirms effectiveness.
What about its limits?

* ML4VD — Robustified + testing is amplified *hold-one-out™

Amplified Amplified
4 Training Data Testing Data

| 55%
ML Technique
accuracy
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Benchmarking confirms effectiveness.
What about its limits?

* ML4VD — Robustified + testing is amplified *hold-one-out™

X

Test failed: The model now ohly overfits to
the specific way tn which we robustify the
model, There is still an alkernative
explanation of the impressive results,
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Benchmarking confirms effectiveness.
What about its limits?

 Bonus: How well can it distinguish vulnerable and patched function?

Standard New Dataset
Training Dataset VulnPatchPairs

ML Technique @ @
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 Bonus: How well can it distinguish vulnerable and patched function?

Standard New Dataset
Training Dataset VulnPatchPairs

. 50%
ML Technique
accuracy
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Benchmarking confirms effectiveness.
What about its limits?

 Bonus: How well can it distinguish vulnerable and patched function?

ML Technique

Amplified Standard
Training Dataset

TRAIN

New Dataset
VulnPatchPairs
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50%
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Benchmarking confirms effectiveness.
What about its limits?

* Given such impressive results, the experimenter might assume they
are explained by ML4VD’s true capability to detect vulnerabillities.
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Benchmarking confirms effectiveness.
What about its limits?

* Given such impressive results, the experimenter might assume they
are explained by ML4VD’s true capability to detect vulnerabillities.

* We study the veracity of this assumption:
 Even simple semantic-preserving changes reduces observed effectiveness.
 Making the model more robust doesn’t change this insight.
« ML4VD cannot even distinguish buggy from patched version.
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Benchmarking confirms effectiveness.
What about its limits?

* Given such impressive results, the experimenter might assume they
are explained by ML4VD’s true capability to detect vulnerabillities.

* We study the veracity of this assumption:
 Even simple semantic-preserving changes reduces observed effectiveness.
 Making the model more robust doesn’t change this insight.
« ML4VD cannot even distinguish buggy from patched version.

* Alternative explanation of impressive results:
e Spurious correlations with unrelated features.

USENIX SEC’24



Top Score on the Wrong Exam

“Given this function, does it contain a security flaw?”

Does this qu@.s%mm malee seinse?

What is the definition of security flaw? What does it even mean to contain a security flaw?
Let’s say, the code in the function causes the program to be vulnerable to attack. Changing that function fixes the vulnerability.
Can we say whether the function causes the program to be vulnable without further context?

This is the question we study.

ISSTA'25
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* ML4VD is mostly cast as binary classification problem.
* “Given this function, does it contain a security flaw?”

40 -
Function 71 (87.7%) B SE Conferences
| S Journals
Line/Statement 15 (18.5%) @ 30 - B Security Conferences
2 Inter-procedural Slice 13 (16.0%) E‘
i‘g File S 20
: :
@) Program g
Commit 4 1 (1.2%) B SE Conferences . 10 -
S Journals
Repository { 1 (1.2%) BN Security Conferences
I T T T T O -
0 20 40 60 80 2020 2021 2022 2023 2024
Number of Papers Year
(a) ML4VD papers per problem statement granularity. (b) ML4VD papers per year.

Fig. 2. Literature survey results for the 81 ML4VD papers we identified in the top Software Engineering (SE)
and Security conferences and journals. Figure 2a shows how the papers define the problem of ML4VD. Note
that a paper may use multiple granularities, which explains why the numbers in Figure 2a do not add up to
100%. Figure 2b shows how many papers were published each year since 2020.
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1 TfLiteStatus ResizeQOutputTensors(TfLiteContext* context, TfLiteNode* node,
2 const TfLiteTensor* axis,

3 const TfLiteTensor* input, int num_splits) {
4 int axis_value = GetTensorData<int>(axis)[0];

5 // [...]

6 const int input_size = SizeOfDimension(input, axis_value);

7 TF_LITE_ENSURE_MSG(context, input_size % num_splits == 0,

8 "Not an even split");

9 const int slice_size = input_size / num_splits;

10 for (int 1 = 0; 1 < NumOutputs(node); ++1i) {

11 TfLiteIntArray* output_dims = TfLiteIntArrayCopy(input->dims);

12 output_dims->datalaxis_value] = slice_size;

13 /7 [...]

14 TF_LITE_ENSURE_STATUS(context->ResizeTensor (context, output, output_dims));
15 }

16 return kTfLiteOk;

17 }

Fig. 1. Context-dependent vulnerability (CVE-2021-29599) in DiverseVul dataset. If the function is called with
num_splits=0, it crashes with a division-by-zero in Line 7.
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Context-dependency of functions labeled as vulnerable.

How often do we have to abstain when deciding without further context whether a given
function (that is labeled as vulnerable) really causes the program to be vulnerable?
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Context-dependency of functions labeled as vulnerable.

How often do we have to abstain when deciding without further context whether a given
function (that is labeled as vulnerable) really causes the program to be vulnerable?

O/ of the randomly sampled
1 OO A) vulnerable functions.
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I Context- I

Vulnerible: 39 dependent:39 Vulnerible: 47 dceoglets)c;gnt: 47
BigVul: 100 Context- Devign: 100
independent:( Context-
independent:0
Secure: 61 Secure: 50
No Decision: 0 = No Decision: 3
(a) BigVul (b) Devign
Function External Type Execution
Dataset Argument Function Declaration Globals Environment
BigVul 16 (41%) 19 (49%) 1 (2%) 3 (8%) 0 (0%)
Devign | 22 (47%) 20(43%)  0(0%)  5(10%) 0 (0%)
DiverseVul| 26 (40%) 34 (52%) 2 (3%) 1(2%) 2 (3%)

DiverseVul: 100

Context-
VUlnefible- 65 dependent:65
Context-

independent:()
Secure: 35

No Decision:

(c) DiverseVul

ISSTA'25



Top Score on the Wrong Exam

What about functions that were labeled as secure?

How often would they make a program vulnerable |F a corresponding context existed?
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What about functions that were labeled as secure?

How often would they make a program vulnerable |F a corresponding context existed?
9 2 (y of the randomly sampled
O secure functions.
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 ML4VD as function-level, binary classification problem is ill-defined!
* Yet, ML4VD techniques perform impressively on these benchmarks.

ka
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 ML4VD as function-level, binary classification problem is ill-defined!
* Yet, ML4VD techniques perform impressively on these benchmarks.

? Hink:

Benchmarking confirms effectiveness.
What about its limits?

ka

« ML4VD — Robustified + testing is amplified *hold-one-out*

Amplified Amplified
4 Training Data Testing Data

. 55%
ML Technique
accuracy
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 Why"? Spurious correlations with features unrelated to vulnerability.

 Even removing all information about vulnerabllity from functions,
..e., Just using token counts, we get:

ISSTA'25



Top Score on the Wrong Exam

 Why"? Spurious correlations with features unrelated to vulnerability.

 Even removing all information about vulnerabllity from functions,
..e., Just using token counts, we get:

62 % f1-score on Devign.
86 % f1-score on BigVul.
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* \What about alternative problem statements?

» Classification with abstention.
e Either classify into vulnerable / not vulnerable OR abstain entirely.

* Impractical: Classifier would abstain in most cases.
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* \What about alternative problem statements?

e (Classification with abstention.

» Classification using other base units.

e [ine/statement/commit-level: No reason to believe
context-dependency problem is solved. Function

71 (87.7%)

15 (18.5%)

Line/Statement

* File/program-level: Impractical?

Inter-procedural Slice 13 (16.0%)

File

Granularity

Program
B SE Conferences

Commit 4 1 (1.2%)
2 Journals
Repository 1 1 (1.2%) BN Security Conferences
0 20 40 60 80

Number of Papers

(a) ML4VD papers per problem statement granularity.
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* \What about alternative problem statements?

e (Classification with abstention.

» Classification using other base units.
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* \What about alternative problem statements?
* (Classification with abstention.

» Classification using other base units.
* |Inter-procedural slice:
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* \What about alternative problem statements?
» Classification with abstention.
» Classification using other base units.

» Context-conditional classification.
e (Given the context of the program/repository, is this function vulnerable?

* Problem:
 Doesn’t solve our benchmarking problem (spurious correlations).
* A bad classifier that *disregards™ the context evidently still performs very well.
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» Classification using other base units.
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e What did we learn?

 We use benchmarking to learn how well a technigue solves the problem,
but an entire field can beat benchmarks without solving the problem.

 For ML techniques, we must tackle the problem of spurious correlations
before we can consider benchmark outcomes as trustworthy.

e Recommendation:

 When benchmarking your technique, don’t blindly trust the numbers.
Step back and reflect if you are asking the right questions to begin with.
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According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past five years define ML4VD as a function-level binary classification problem:

Given a function, does it contain a security flaw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often first want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security flaw and confirmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We find that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We find that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-defined and call into question the
internal validity of this growing body of work. Constructively, we call for more effective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: » Security and privacy — Software and application security; - Software and its engi-
neering — Software testing and debugging; - Computing methodologies — Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction

In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD defined and thus evaluated?
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Abstract

Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f, ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
MLAVD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12-15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

Marcel Bohme
MPI-SP. Germany

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2,21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2,5,18,30,35,38,39,41,42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
MLA4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5, 18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose
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ABSTRACT

Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function f, models trained by machine learning techniques
can decide if f contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS

« Computing methodologies — Neural networks; - Software
and its engineering — Software testing and debugging.
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machine learning, automatic vulnerability detection, semantic pre-
serving transformations, large language models
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1 INTRODUCTION

Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5-8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17-20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15-20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16-20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used




There are limits to benchmarking.
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Philosophical Perspective




Hume’s Problem of Induction

* \We can never confirm a scientific theory
just by collecting more evidence in favor.

[{TUMAN UNDERSTANDING, 35

relation of cause and effect ; that our knowledge of that
relation is derived entirely from experience; and that
all our experimental conclusions proceed upon the
supposition that the future will be conformable to the
past. To endeavour, therefore, the proof of this last
supposition by probable arguments, or arguments re-

- * 1711 in Edinburgh
David Hume ;3% Edinburgh
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Popper’s Critical Rationalism

* \We can never confirm a scientific theory
just by collecting more evidence in favor.

* Popper’s criticial rationalism

* Proposal for sound scientific progress in the absence
of the possibility to confirm a scientific theory.

* |nstead of trying to confirm a theory, we should
seriously attempt and fail to find counterexamples
otherwise too many false theories remain in tact.

* 1902 in Vienna

Karl Popper T 1994 in London



Benchmarking does not exempt us from
Critical Rationalism.

 Benchmarking is us trying to confirm the progress of our techniques.
 Benchmarking is important! Some empirical evidence is better than none!

 However, progress on a benchmark # progress on the problem.
* (Going from 92% to 95% is no indicator of progress but of saturation.

 Without an additional approach of critical rationalism, applied to both,
our technigues as well as our benchmarking methodologies,
too many ineffective techniques will appear to be effective.



Benchmarking does not exempt us from
Critical Rationalism.
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How to Solve Cybersecurity
Once and For All

 Example: There is no guarantee of security.
» Concretely, we can never hope to confirm the

Marcel Bohme | Max Planck Institute for Security and Privacy

effectiveness of our defenses.

 But we can seriously attempt and fail to find
exploits in our software despite our defenses.

At last year’s Pwn20Own competition, one individual successfully exploited all major browsers—Chrome,
Firefox, Safari, and Edge—used by billions of people worldwide. Despite decades of security research, the
discovery of new vulnerabilities in important software systems continues unabated.

B uilding security into software
from the start is the most
effective approach to cybersecu-
rity. Unlike physical systems, where
behavior is studied empirically,
software systems are fully described
through source code, which reflects
the programmer’s intentions using
the syntactic and semantic rules
of the programming language.
Because software operates based on
well-defined instructions, we can
theoretically reason about, control,
and monitor its behavior with great
precision. By developing increas-
ingly better security tools and
processes, in the limit, we should
be able to prevent attackers from
launching successful exploits. Is
this how we can solve cybersecurity
once and for all?

How to Solve Cybersecurity
Once and For All

Imagine we have used all avail-
able tools and processes to design,
develop, and maintain our soft-
ware system with security as
first-class citizen.! We’ve applied
offensive and defensive strate-
gies to find and fix flaws, created
threat models, and adopted best

Digital Object Identifier 10.1109/MSEC.2025.3551590

practices, like using memory-safe
languages and rigorous secure
software engineering principles.
We also run continuous testing,
such as fuzzing and security tools
(static/dynamic application secu-
rity testing, SAST/DAST), and
even formally verify critical com-
ponents. But is this enough? Are
we truly safe?

Is it possible for a software sys-
tem to be completely free of secu-
rity flaws? If not, why bother?

Now, imagine youre the ven-
dor of a widely used mobile phone.
Despite your best efforts to protect
security and privacy, the first jailbreak
is released within two weeks. After
patching it, a new jailbreak appears
just months later. Even after exten-
sive work to secure everything, new
jailbreaks keep appearing. Over the
next two decades, you invent critical
mitigations, many of which have been
adopted as de facto industry standard,
only to see the next jailbreak finally
trigger another security update. Does
this mean that your defenses are inef-
fective? Definitely not.

No Universal Claims

About Security

There are at least two reasons
why we cannot guarantee for any

software system that it is free of
security flaws. First, there are the
unknown unknowns: We dont
know what we don’t know. For a
system to withstand attacks, we
must know which properties must
hold. In many cases, we only know
that some software behavior is
actually a security flaw retrospec-
tively. For instance, speculative
execution—a performance optimi-
zation technique where processors
predict and execute instructions
before knowing if they are actually
needed—was meant to improve
the performance of our proces-
sors, and it does in almost all cases.
However, it took someone with a
security perspective and a decent
amount of curiosity to find that
we require all secret-dependent
executions (e.g, in a cryptographic
protocol) to run in constant time:
Meaning they must take exactly
the same amount of time regard-
less of what secret values are being
processed. This constant time
property is violated by specula-
tive execution. An attacker could
measure subtle timing differences
to infer the secret values, effec-
tively breaking the cryptographic
protection. Now, how do we vali-
date or enforce this high-level

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/
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Measures are specific, our claims general.
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ABSTRACT

Given a program where none of our fuzzers finds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer effectiveness and consider
the fuzzer which achieves more coverage as the better one.
Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
find that a fuzzer that covers more code also finds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at finding bugs.
Curiously enough, however, we find no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at finding bugs.
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1 INTRODUCTION

Benchmarking confirms effectiveness.
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(a) 1 hour fuzzing campaigns (p = 0.38).  (b) 1 day fuzzing campaigns (p = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug finding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average

What about its limits?
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According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past five years define ML4VD as a function-level binary classification problem:

Given a function, does it contain a security flaw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often first want to understand the context in which this function is called.
In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security flaw and confirmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We find that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a cor ding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.
But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We find that high scores can be achieved even when

only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-defined and call into question the
internal validity of this growing body of work. Constructively, we call for more effective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: + Security and privacy — Software and application security; - Software and its engi-

neering — Software testing and debugging; - C ing methodologies — Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security

ACM Reference Format:

Niklas Risse, Jing Liu, and Marcel Bshme. 2025. Top Score on the Wrong Exam: On Benchmarking in Machine
Learning for Vulnerability Detection. Proc. ACM Softw. Eng. 2, ISSTA, Article ISSTA018 (July 2025), 23 pages.
https://doi.org/10.1145/3728887

1 Introduction

In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD defined and thus evaluated?
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Abstract this mean that the problem of detecting security vulnerabil-
Recent results of machine learning for automatic vulnerability ities in software is solved? Are these models actually able
detection (MLAVD) have been very promising. Given only the to detect security vulnerabilities, or do the reported scores
source code of a function f, ML4VD techniques can decide if provide a false sense of security?
f contains a security flaw with up to 70% accuracy. However, Even though ML4VD techniques achieve high scores on
as evident in our own experiments, the same top-performing vulnerability detection benchmark datasets, there are still situ-
models are unable to distinguish between functions that con- ations in which they fail to meet expectations when presented
tain a vulnerability and functions where the vulnerability is with new data. For example, it is possible to apply small se-
patched. So, how can we explain this contradiction and how mantic preserving changes to augment the testing dataset of a
can we improve the way we evaluate ML4VD techniques to state-of-the-art model and then measure whether the model
get a better picture of their actual capabilities? changes its predictions. If it does, it would indicate a depen-
In this paper, we identify overfitting to unrelated features dence of the prediction on unrelated features. Examples of
and out-of-distribution generalization as two problems, which such transformations are identifier renaming [18,38,39,41,42],
are not captured by the traditional approach of evaluating insertion of unexecuted statements [18, 35, 39, 41] or re-
MLAVD techniques. As a remedy, we propose a novel bench- placement of code elements with equivalent elements [2,21].
marking methodology to help researchers better evaluate the The impact of augmenting testing data using these trans-
true capabilities and limits of ML4VD techniques. Specifi- formations has been explored for many different software-
cally, we propose (i) to augment the training and validation related tasks and the results seem to be clear: Learning-
dataset according to our cross-validation algorithm, where based models fail to perform well when testing data gets
a semantic preserving transformation is applied during the augmented using semantic preserving transformations of

augmentation of either the training set or the testing set, and code [2,5,18,30,35,38,39,41,42].
(ii) to augment the testing set with code snippets where the In our own experiments, we were able to reproduce the
vulnerabilities are patched. findings of the literature and made additional observations:

Using six ML4VD techniques and two datasets, we find MLAVD techniques that were trained on typical training data
(a) that state-of-the-art models severely overfit to lated for ility d ion are also unable to distinguish be-
features for predicting the vulnerabilities in the testing data, tween vulnerable functions and their patched counterparts. If a
(b) that the performance gained by data augmentation does not patched function is also predicted as vulnerable, this indicates
generalize beyond the specific augmentations applied during that the prediction critically depends on features unrelated to
training, and (c) that state-of-the-art ML4VD techniques are the presence of a security vulnerability.

unable to distinguish vulnerable functions from their patches. It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
Recently several different publications have reported high but does it really reduce the dependence on unrelated features,
scores on vulnerability detection benchmarks using machine or are the models just overfitting to different unrelated features
learning (ML) techniques [1,12—15,28]. The resulting models of the data?

seem to outperform traditional program analysis methods, e.g. In this paper, we propose a novel benchmarking methodol-
static analysis, even without requiring any hard-coded knowl-  ogy that can be used to evaluate the capabilities of ML4VD
edge of program semantics or computational models. So, does hniques by using data ion. First, we propose
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Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed

corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the specific characteristics of the

benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen differently, the same fuzzers may be ranked differently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the specific properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our first methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
different effects this property has on various fuzzers. However, due to the large number of properties and the difficulty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive

picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer

developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer effectiveness.

Abhik Roychoudhury
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We instantiate each approach on a subset of properties suspected of impacting the relative effectiveness of fuzzers and quantify the
effects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial

seed-corpus and the program execution speed, which can have statistically significant effect on the relative effectiveness of fuzzers.
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 What did we learn?
« Sometimes, there is no optimal measure of success.

 Even if there is a strong correlation, you cannot substitute one measure for
another and expect the same benchmarking outcome.

* Recommendation:
* Triangulate effectiveness using different measures of success.
* Unless there is agreement between two measures, report both measures.

Benchmarking confirms effectiveness.
What about its limits?
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According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past five years define ML4VD as a function-level binary classification problem:
Given a function, does it contain a security flaw?

From our experience as security researchers, faced with deciding whether a given function makes the program

vulnerable to a s, we would often first want to understand the context in which this function is called.
In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security flaw and confirmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We find that in almost all cases this decision cannot be made without further

context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling

context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We find that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without

actually detecting any

ecurity vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-defined and call into question the
internal validity of this growing body of work. Constructively, we call for more effective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: + Security and privacy — Software and application security; - Software and its engi-

neering — Software testing and debugging; - Computing methodologies — Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
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1 Introduction

In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD defined and thus evaluated?
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f, ML4VD techniq an decide if

f contains a security flaw with up to 70% accuracy. However,

as evident in our own experiments, the same top-performing

models are unable to distinguish between functions that con-

tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

ing to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the

In this paper, we identify over

ditional approach of evaluating

MLAVD techniques. As a remedy, we propose a novel bench-

marking methodology to help researchers better evaluate the

true capabilities and limits of ML4VD techniques.
cally, we propose (i) to augment the training and validation
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scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12-15,28]. The resulting models

seem to outperform traditional program analysis methods, e.g.
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edge of program semantics or computational models. So, does
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nalysis, even without requiring any hard-coded knowl-
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this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

4VD techniques achieve hi

ction benchmark
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ations in which they fail to meet expectations when presented

with new data. For

ample, it is possible to apply small se-
ges to augment the testing dataset of a

mantic preserving chang
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2,21]
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data
augmented using semantic preserving transformations of
code [2,5,18,30,35,38,39,41,42].

In our own experiments, we were able to reproduce the

gets

findings of the literature and made additional observations:
MLAVD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a

patched function is also predicted as vulnerable, this ind
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features b; omenting not just the testin,
but also the training data ,35,38,39.41,42]. Indeer
seems to restore the lost performance back to previous levels,
but does it really reduce the depen e on unrelated features,

or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
uate the capabilities of ML4VD
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methodologies to quantify the impact of the specific properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our first methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
different effects this property has on various fuzzers. However, due to the large number of properties and the difficulty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive

picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer

developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer effectiveness.
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