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Scientific Enquiry as a Testing Problem

“I propose to replace [..] the question of the sources  
of our knowledge [e.g., how to identify the “best” 
scientific theory] by the entirely different question:  
'How can we hope to detect and eliminate error?’"

Karl Popper *  1902 in Vienna 
† 1994 in London

“The proper answer to my question [..] is, I believe, 
‘By critizing the theories or guesses of others and 
—if we train ourselves to do so—by critizing our 
own theories and guesses.”
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ABSTRACT
Fuzz testing has enjoyed great success at discovering security criti-
cal bugs in real software. Recently, researchers have devoted sig-
ni�cant e�ort to devising new fuzzing techniques, strategies, and
algorithms. Such new ideas are primarily evaluated experimentally
so an important question is: What experimental setup is needed
to produce trustworthy results? We surveyed the recent research
literature and assessed the experimental evaluations carried out
by 32 fuzzing papers. We found problems in every evaluation we
considered. We then performed our own extensive experimental
evaluation using an existing fuzzer. Our results showed that the
general problems we found in existing experimental evaluations
can indeed translate to actual wrong or misleading assessments. We
conclude with some guidelines that we hope will help improve ex-
perimental evaluations of fuzz testing algorithms, making reported
results more robust.
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1 INTRODUCTION
A fuzz tester (or fuzzer) is a tool that iteratively and randomly gener-
ates inputs with which it tests a target program. Despite appearing
“naive” when compared to more sophisticated tools involving SMT
solvers, symbolic execution, and static analysis, fuzzers are sur-
prisingly e�ective. For example, the popular fuzzer AFL has been
used to �nd hundreds of bugs in popular programs [1]. Comparing
AFL head-to-head with the symbolic executor angr, AFL found 76%
more bugs (68 vs. 16) in the same corpus over a 24-hour period [50].
The success of fuzzers has made them a popular topic of research.
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Why do we think fuzzers work? While inspiration for new ideas
may be drawn from mathematical analysis, fuzzers are primarily
evaluated experimentally. When a researcher develops a new fuzzer
algorithm (call it A), they must empirically demonstrate that it
provides an advantage over the status quo. To do this, they must
choose:

• a compelling baseline fuzzer B to compare against;
• a sample of target programs—the benchmark suite;
• a performance metric to measure when A and B are run on
the benchmark suite; ideally, this is the number of (possibly
exploitable) bugs identi�ed by crashing inputs;
• a meaningful set of con�guration parameters, e.g., the seed
�le (or �les) to start fuzzing with, and the timeout (i.e., the
duration) of a fuzzing run.

An evaluation should also account for the fundamentally random
nature of fuzzing: Each fuzzing run on a target program may pro-
duce di�erent results than the last due to the use of randomness.
As such, an evaluation should measure su�ciently many trials to
sample the overall distribution that represents the fuzzer’s perfor-
mance, using a statistical test [38] to determine that A’s measured
improvement over B is real, rather than due to chance.

Failure to perform one of these steps, or failing to follow rec-
ommended practice when carrying it out, could lead to misleading
or incorrect conclusions. Such conclusions waste time for practi-
tioners, who might pro�t more from using alternative methods
or con�gurations. They also waste the time of researchers, who
make overly strong assumptions based on an arbitrary tuning of
evaluation parameters.

We examined 32 recently published papers on fuzz testing (see
Table 1) located by perusing top-conference proceedings and other
quality venues, and studied their experimental evaluations. We
found that no fuzz testing evaluation carries out all of the above
steps properly (though some get close). This is bad news in theory,
and after carrying out more than 50000 CPU hours of experiments,
we believe it is bad news in practice, too. Using AFLFast [6] (as A)
and AFL (as baseline B), we carried out a variety of tests of their
performance. We chose AFLFast as it was a recent advance over
the state of the art; its code was publicly available; and we were
con�dent in our ability to rerun the experiments described by the
authors in their own evaluation and expand these experiments by
varying parameters that the original experimenters did not. This
choice was also driven by the importance of AFL in the literature:
14 out of 32 papers we examined used AFL as a baseline in their
evaluation. We targeted three binutils programs (nm, objdump, and
cxx�lt) and two image processing programs (gif2png and FFmpeg)
used in prior fuzzing evaluations [9, 44, 45, 55, 58]. We found that
experiments that deviate from the above recipe could easily lead
one to draw incorrect conclusions, for these reasons:
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ABSTRACT
Given a program where none of our fuzzers �nds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer e�ectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
�nd that a fuzzer that covers more code also �nds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at �nding bugs.

Curiously enough, however, we �nd no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at �nding bugs.
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1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug �nding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them �nds any bugs. If indeed they don’t, we
might have some con�dence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would �nd no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of �nding bugs? A widely used proxy measure
of fuzzer e�ectiveness is the code coverage that is achieved. After
all, a fuzzer cannot �nd bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers ⇥ 24 C programs ⇥ 20 fuzzing
campaigns of 23 hours (⇡ 13 CPU years). We use three measures of
coverage and two measures of bug �nding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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(a) 1 hour fuzzing campaigns (d = 0.38).
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(b) 1 day fuzzing campaigns (d = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug �nding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly di�erent. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the di�erence in coverage and the di�erence in bug �nding are
statistically signi�cant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug �nding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the di�erences in terms of
coverage and bug �nding are statistically signi�cant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the di�erences in terms of coverage and bug �nding
is statistically signi�cant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
di�erences to be statistically signi�cant at ?  0.0001 for coverage
and bug �nding, do we �nd a strong agreement. However, statistical
signi�cance at ?  0.0001 only in terms of coverage is not su�cient;
we again �nd only weak agreement. The increase in agreement
with statistical signi�cance is not observed when we measure bug
�nding using the time-to-error. We also �nd that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Abstract—Fuzzing has proven to be a highly effective approach

to uncover software bugs over the past decade. After AFL pop-

ularized the groundbreaking concept of lightweight coverage

feedback, the field of fuzzing has seen a vast amount of scien-

tific work proposing new techniques, improving methodological

aspects of existing strategies, or porting existing methods to

new domains. All such work must demonstrate its merit by

showing its applicability to a problem, measuring its perfor-

mance, and often showing its superiority over existing works in

a thorough, empirical evaluation. Yet, fuzzing is highly sensitive

to its target, environment, and circumstances, e. g., randomness

in the testing process. After all, relying on randomness is one

of the core principles of fuzzing, governing many aspects of

a fuzzer’s behavior. Combined with the often highly difficult

to control environment, the reproducibility of experiments is a

crucial concern and requires a prudent evaluation setup. To

address these threats to validity, several works, most notably

Evaluating Fuzz Testing by Klees et al., have outlined how

a carefully designed evaluation setup should be implemented,

but it remains unknown to what extent their recommendations

have been adopted in practice.

In this work, we systematically analyze the evaluation

of 150 fuzzing papers published at the top venues between

2018 and 2023. We study how existing guidelines are imple-

mented and observe potential shortcomings and pitfalls. We

find a surprising disregard of the existing guidelines regarding

statistical tests and systematic errors in fuzzing evaluations.

For example, when investigating reported bugs, we find that

the search for vulnerabilities in real-world software leads to

authors requesting and receiving CVEs of questionable quality.

Extending our literature analysis to the practical domain, we

attempt to reproduce claims of eight fuzzing papers. These

case studies allow us to assess the practical reproducibility

of fuzzing research and identify archetypal pitfalls in the

evaluation design. Unfortunately, our reproduced results reveal

several deficiencies in the studied papers, and we are unable to

fully support and reproduce the respective claims. To help the

field of fuzzing move toward a scientifically reproducible eval-

uation strategy, we propose updated guidelines for conducting

a fuzzing evaluation that future work should follow.

1. Introduction

Fuzzing, a portmanteau of “fuzz testing”, has gained
much attention in recent years, and the method has proven
to be highly successful in uncovering many types of faults
in software systems. Companies such as Meta, Google, and
Oracle have invested significant resources in this technology
and use it to test their products. Large software projects such
as web browsers or the Linux kernel incorporate fuzzing
into their development cycle, and Google is running an
extensive and continuous fuzzing campaign for more than
1, 200 open-source projects via OSS-Fuzz [62]. Beyond the
wide acceptance in the industry, a large number of academic
papers have proposed numerous improvements and novel
techniques to enhance fuzzing further. More specifically, we
found that, over the past six years, more than 280 papers on
fuzzing have been published in the top computer security
and software engineering venues.

A cornerstone of fuzzing research, and science in gen-
eral, is that other researchers can critically assess the cor-
rectness of scientific results. To this end, the research results
must be reproducible, meaning that another group should be
able to obtain the same results using the same experimental
setup, often by using a research artifact provided by the au-
thors [8]. Reproducibility is paramount for other researchers
to understand, trust, and build on the research results.

To enable high-quality research and provide a common
foundation for evaluating fuzzing methods, several works
describe how newly proposed fuzzing approaches should be
evaluated. In 2018, the first and most influential paper de-
scribing a reproducible evaluation design was published by
Klees et al. [88]. It describes guidelines to advise researchers
on how fuzzing research should evaluate their respective
contributions. For example, a crucial insight introduced by
Klees et al. is the repetition of experiments to account for
the inherent randomness of the fuzzing process. Although
Klees et al. recommend “a sufficient number of trials” and
use 30 trials in their own experiments, we found that in
practice, this recommendation is interpreted as anything
between three and 20 repetitions. Another guideline is to
confirm the fuzzers’ performance statistically; however, this
makes little sense with few repetitions and is often skipped.
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ABSTRACT
Randomized algorithms have been used to successfully address many
different types of software engineering problems. This type of al-
gorithms employ a degree of randomness as part of their logic.
Randomized algorithms are useful for difficult problems where a
precise solution cannot be derived in a deterministic way within
reasonable time. However, randomized algorithms produce differ-
ent results on every run when applied to the same problem instance.
It is hence important to assess the effectiveness of randomized algo-
rithms by collecting data from a large enough number of runs. The
use of rigorous statistical tests is then essential to provide support
to the conclusions derived by analyzing such data. In this paper, we
provide a systematic review of the use of randomized algorithms in
selected software engineering venues in 2009. Its goal is not to per-
form a complete survey but to get a representative snapshot of cur-
rent practice in software engineering research. We show that ran-
domized algorithms are used in a significant percentage of papers
but that, in most cases, randomness is not properly accounted for.
This casts doubts on the validity of most empirical results assess-
ing randomized algorithms. There are numerous statistical tests,
based on different assumptions, and it is not always clear when and
how to use these tests. We hence provide practical guidelines to
support empirical research on randomized algorithms in software
engineering.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General;
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Experimentation, Reliability, Theory

Keywords
Statistical difference, effect size, parametric test, non-parametric
test, confidence interval, Bonferroni adjustment, systematic review,
survey.
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1. INTRODUCTION
Many problems in software engineering can be alleviated through

automated support. For example, automated techniques exist to
generate test cases that satisfy some desired coverage criteria on
the system under test, such as for example branch [26] and path
coverage [22]. Because often these problems are undecidable, de-
terministic algorithms that are able to provide optimal solutions in
reasonable time do not exist. The use of randomized algorithms
[44] is hence necessary to address this type of problems.

The most well-known example of randomized algorithm in soft-
ware engineering is perhaps random testing [13, 6]. Techniques
that use random testing are of course randomized, as for example
DART [22] (which combines random testing with symbolic execu-
tion). Furthermore, there is a large body of work on the application
of search algorithms in software engineering [25], as for example
Genetic Algorithms. Since practically all search algorithms are ran-
domized and numerous software engineering problems can be ad-
dressed with search algorithms, randomized algorithms therefore
play an increasingly important role. Applications of search algo-
rithms include software testing [41], requirement engineering [8],
project planning and cost estimation [2], bug fixing [7], automated
maintenance [43], service-oriented software engineering [9], com-
piler optimisation [11] and quality assessment [32].

A randomized algorithm may be strongly affected by chance. It
may find an optimal solution in a very short time or may never
converge towards an acceptable solution. Running a randomized
algorithm twice on the same instance of a software engineering
problem usually produces different results. Hence, researchers in
software engineering that develop novel techniques based on ran-
domized algorithms face the problem of how to properly evaluate
the effectiveness of these techniques.

To analyze the effectiveness of a randomized algorithm, it is im-
portant to study the probability distribution of its output or various
performance metrics [44]. For example, a practitioner might want
to know what is the execution time of those algorithms on average.
But randomized algorithms can yield very complex and high vari-
ance probability distributions, and hence looking only at average
values can be misleading, as we will discuss in more details in this
paper.

The probability distribution of a randomized algorithm can be
analyzed by running such an algorithm several times in an inde-
pendent way, and then collecting appropriate data about its results
and performance. For example, consider the case in which we want
to find failures in software by using random testing (assuming that
an automated oracle is provided). As a way to assess its perfor-
mance, we can sample test cases at random until the first failure is
detected. In the first experiment, we might find a failure after sam-
pling 24 test cases (for example). We hence repeat this experiment
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• Shonan Meeting: Benchmarking = Top-3 Research Challenge!

• Google’s commitment: Support of the community via FuzzBench.

• Highest standards of experimental design (20+ trials, 23hrs, 20+ programs).

• 50+ fuzzers, 150+ experiments for 120+ papers (as of FSE’21), reproducible.
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ABSTRACT
Fuzzing is a key tool used to reduce bugs in production software. At
Google, fuzzing has uncovered tens of thousands of bugs. Fuzzing
is also a popular subject of academic research. In 2020 alone, over
120 papers were published on the topic of improving, developing,
and evaluating fuzzers and fuzzing techniques. Yet, proper evalu-
ation of fuzzing techniques remains elusive. The community has
struggled to converge on methodology and standard tools for fuzzer
evaluation.

To address this problem, we introduce FuzzBench as an open-
source turnkey platform and free service for evaluating fuzzers.
It aims to be easy to use, fast, reliable, and provides reproducible
experiments. Since its release in March 2020, FuzzBench has been
widely used both in industry and academia, carrying out more than
150 experiments for external users. It has been used by several
published and in-the-work papers from academic groups, and has
had real impact on the most widely used fuzzing tools in industry.
The presented case studies suggest that FuzzBench is on its way
to becoming a standard fuzzer benchmarking platform.

CCS CONCEPTS
• Software and its engineering → Application specific develop-
ment environments; Software testing and debugging; • Security
and privacy→ Software security engineering; •Mathemat-
ics of computing → Hypothesis testing and confidence interval
computation; • General and reference → Evaluation; Experi-
mentation.
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1 INTRODUCTION
Fuzzing has attracted the attention of both industry and academia
because it is effective at finding bugs in real-world software, not
just in experiments. Today, fuzzing has seen high adoption among
developers [34] and is used to find bugs in widely used production
software [26, 27, 40, 42]. At Google we have found tens of thou-
sands of bugs [1] with fuzzers like AFL [45], libFuzzer [37] and
Honggfuzz [43]. Academic research on fuzzing has driven many
improvements since the inception of coverage-guided fuzzing [45]
– Google Scholar reports several thousand published papers since
2014 [28].

While fuzzing efforts have been successful in improving software
quality, proper evaluation of fuzzing techniques is still a challenge.
There is no consensus on which tools and techniques are effective
and generalize well for fuzzer comparison. This is in part due to the
lack of standard benchmarking tools, metrics, and representative
program datasets, all of which have hampered reproducibility [48].

Klees et al. [31] were the first to study the current state of fuzzing
evaluations. They analyzed 32 fuzzing research papers and found
that none provided enough “evidence to justify general claims of
effectiveness”. More specifically, some papers do not use a large
and diverse set of real-world benchmarks, have too few trials, use
short trials, or lack statistical tests. Furthermore, it is hard to cross-
compare between all papers as they typically use different evalu-
ation setup and configuration (e.g., how experiments are run and
measured), different subjects (benchmark programs) or even differ-
ent coverage metrics [41].

Another common challenge is that sound fuzzer evaluation has
a high cost, both in researcher time and computational resources. A
typical evaluation compares a large number of tools on a large num-
ber of subjects (benchmark programs). Setting up all these tools and
subjects and making sure that each tool-subject pair works together
(i.e., compiles, runs) takes significant effort. Some researchers we
talked to described spending several months working on evaluation.
A sound evaluation also needs massive computation time (on the
order of CPU-years) and resources, as each tool-subject pair needs
to run multiple times for statistical significance. In practice, it can
take up to ∼ 11 CPU-years to run a well-conducted experiment
(e.g., 24 hours × 20 trials × 10 fuzzers × 20 subjects). On Google
Cloud, this experiment could cost over $2,000. Considering the re-
peated evaluations necessary during the development of a fuzzing
tool, research can require CPU-centuries and tens of thousands of
dollars.

FuzzBench aims to alleviate these problems by providing an
open-source fuzzer benchmarking service. We designed it following

This work is licensed under a Creative Commons Attribution-
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• Shonan Meeting: Benchmarking = Top-3 Research Challenge!

• Google’s commitment: Support of the community via FuzzBench.

• Highest standards of experimental design (20+ trials, 23hrs, 20+ programs).

• 50+ fuzzers, 150+ experiments for 120+ papers (as of FSE’21), reproducible.

• Used in SBFT Fuzzing competitions (since 2023).

• Enabled major advances in industrial fuzzers:  

AFL++, LibAFL, LibFuzzer, Honggfuzz, and Centipede.


• Today, there many other fuzzer benchmark frameworks.

• Magma: https://github.com/HexHive/magma 

• Fuzztastic: https://github.com/tum-i4/fuzztastic

• UniBench: https://github.com/unifuzz/unibench

• ProFuzzBench: https://github.com/profuzzbench/profuzzbench
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• Benchmarking to measure progress in all of automation.

• Automated Software Engineering: SWE-Bench, Defects4J, CoREBench.

• Automated Cybersecurity: DARPA CGC, AIxCC (8.5 million USD in prizes)


• Machine Learning / Artificial Intelligence: 

• ARC Challenge (1+ million USD in prizes).

• Most ML/AI conferences have a track to announce new benchmarks.

• Every announcement of a new LLM comes with results on popular benchmarks.

Benchmarks induce progress.
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How do we know which fuzzer is better?

We measure code coverage!



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

We measure code coverage!

• Key Idea:

• You cannot find bugs in code that is not covered.


• Question:

• How strong is the relationship between coverage and bug finding?

Benchmarking Fuzzers Using Coverage



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• Key Idea:

• You cannot find bugs in code that is not covered.


• Question:

• How strong is the relationship between coverage and bug finding?

ICSE’14

Benchmarking Fuzzers Using Coverage



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• Key Idea:

• You cannot find bugs in code that is not covered.


• Question:

• How strong is the relationship between coverage and bug finding?

ICSE’14

This is called “correlation”.

Benchmarking Fuzzers Using Coverage



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• Key Idea:

• You cannot find bugs in code that is not covered.


• Question:

• How strong is the relationship between coverage and bug finding?

ICSE’14

This is called “correlation”.

• Observation: Test suites with  
more coverage find more bugs  
only because they are bigger.

Benchmarking Fuzzers Using Coverage
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• Key Idea:

• You cannot find bugs in code that is not covered.


• Question:

• How strong is the relationship between coverage and bug finding?

ICSE’14

This is called “correlation”.

ICSE’14

• Observation: Test suites with  
more coverage find more bugs  
irrespective of whether they are bigger.

Benchmarking Fuzzers Using Coverage
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• Key Idea:

• You cannot find bugs in code that is not covered.


• Question:

• How strong is the relationship between coverage and bug finding?

ICSE’14

This is called “correlation”.

ICSE’14

• Observation: Test suites with  
more coverage find more bugs  
irrespective of whether they are bigger.

This is called “contradiction”.

Benchmarking Fuzzers Using Coverage
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• Key Idea:

• You cannot find bugs in code that is not covered.


• Question:

• How strong is the relationship between coverage and bug finding?

This is called “correlation”.

ASE’20

Benchmarking Fuzzers Using Coverage
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This is called “correlation”.

ASE’20

• Key Idea:

• You cannot find bugs in code that is not covered.


• Question:

• How strong is the relationship ?

Benchmarking Fuzzers Using Coverage
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Correlation: Very strong

Why?

Quick Detour
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STADS: So�ware Testing as Species Discovery
Spatial and Temporal Extrapolation from Tested Program Behaviors

MARCEL BÖHME∗, National University of Singapore and Monash University, Australia

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program
behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has
currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has
been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the
coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no
vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if
the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.

In this article, I establish an unexpected connection with the otherwise unrelated scienti�c �eld of ecology,
and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species
(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists
would �rst sample a large number of individuals from that forest, determine their species, and extrapolate
from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total
number of species, (ii) of the additional sampling e�ort required to discover 10% more species, or (iii) of the
probability to discover a new species are classical problems in ecology. The STADS framework draws from
over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge
for automated test generation. Our preliminary empirical study demonstrates a good estimator performance
even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS
framework provides statistical correctness guarantees with quanti�able accuracy.

CCS Concepts: • Security and privacy→ Penetration testing; • Software and its engineering→ Soft-
ware testing and debugging;

Additional Key Words and Phrases: Statistical guarantees, extrapolation, fuzzing, stopping rule, code coverage,
species coverage, discovery probability, security, reliability, measure of con�dence, measure of progress
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1 INTRODUCTION
The development of automated and practical approaches to vulnerability detection has never
been more important. The recent world-wide WannaCry cyber-epidemic clearly demonstrates the
vulnerability of our well-connected software systems. WannaCry exploits a software vulnerability
on Windows machines to gain root access on a huge number of computers all over the world. The
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Assurance in Software Testing: A Roadmap
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Abstract—As researchers, we already understand how to make
testing more effective and efficient at finding bugs. However, as
fuzzing (i.e., automated testing) becomes more widely adopted
in practice, practitioners are asking: Which assurances does a
fuzzing campaign provide that exposes no bugs? When is it safe
to stop the fuzzer with a reasonable residual risk? How much
longer should the fuzzer be run to achieve sufficient coverage?

It is time for us to move beyond the innovation of increasingly
sophisticated testing techniques, to build a body of knowledge
around the explication and quantification of the testing process,
and to develop sound methodologies to estimate and extrapolate
these quantities with measurable accuracy. In our vision of the
future practitioners leverage a rich statistical toolset to assess
residual risk, to obtain statistical guarantees, and to analyze
the cost-benefit trade-off for ongoing fuzzing campaigns. We
propose a general framework as a first starting point to tackle this
fundamental challenge and discuss a large number of concrete
opportunities for future research.

I. INTRODUCTION

Cognitive psychology tells us that the unaided human mind is
vulnerable to many fallacies and illusions because of its reliance
on its memory for vivid anecdotes rather than systematic statistics.

— Prof. Steven Pinker (Dep. of Psychology at Harvard)

A. A Vivid Anecdote

Last year, we attended a meeting with several representatives
of a large company that provides security assessment services
for governments and industries worldwide. In preparation for
this meeting, we learned about their product portfolio and found
that their main product, a protocol-based blackbox fuzzer,1
can be used for security certification of medical devices (IEC
62443-4-2).2 While the fuzzer is part of a larger certification
process,3 it is primarily the fuzzer’s task to identify vulnera-
bilities that could be exploited remotely over the network.

Now, medical devices are safety-critical systems and un-
detected vulnerabilities can be life threatening. For instance,
Halperin et al. [2] describe several attacks on an implantable
cardioverter defibrillator to control when electrical shocks are
administered to the patient’s heart. Hence, subjecting medical
devices to rigorous cyber security assessment is a powerful
mitigator of cyber risks. This inspires trust in the certificate.

1We shall use the terms fuzzing and automated testing interchangeably.
2The assessment scheme for IEC 62443, the worldwide standard for security

of Industrial Control Systems, is operated by the ISA Security Compliance
Institute and offered within the Embedded Device Security Assurance (EDSA)
product which ascertains compliance with IEC 62443-4-2 [1].

3The ISASecure EDSA certification also requires that the organization
follows a robust, secure software development process and that the product
has properly implemented the security-related functional requirements.

A violation of this trust (e.g., if an attacker exploited an
undetected vulnerability in a medical device that is certified)
would be disastrous. Thus, the company’s reputation and
the certificate’s credibility depend, at least in part, on the
assurances which the fuzzer provides.

We walked into that meeting wondering about this question.
Which assurances are derived for the certificate from applying
the company’s fuzzer? To paraphrase Djikstra, fuzzing can be
used only to show the presence of vulnerabilities, not their
absence. How do they effectively assess the residual risk of a
fuzzing campaign that finds no vulnerabilities? How do they
arrive at the decision to stop the fuzzer and to proceed with
the certification? It turns out that the certification scheme does
not specify how much fuzzing is sufficient for certification.
Neither does it specify a concrete value for the allowable
residual risk that an undiscovered vulnerability still exists. In
practice, the decision is with the individual security researcher.
Even if a concrete threshold value was specified, there is no
statistical framework available that would allow the researcher
to quantify the residual risk for an ongoing campaign [3]–[5].

In the end, we were told, the decision is mostly based on
experience. Clearly, a long-running fuzzing campaign provides
much stronger assurances than a shorter one; meaning, the
residual risk decreases as the length of the campaign increases.
Hence, intuitively there is a particular point in time when it
is both economical and safe to abort a fuzzing campaign that
has found no vulnerabilities.

B. Call for Systematic Statistics
In this paper, we argue that we ought to do better than

relying on an individual’s experience. The security researcher
should be able to systematically assess and quantify the
inherent uncertainty. The certification authority should be
able to provide concrete guidance in the form of measurable
threshold values. This offers an opportunity for us as software
engineering researchers to develop a rich statistical toolset that
will enable software engineering practitioners to assess and
quantify the automated testing process.

Senior members of our community have previously called
for a general statistical framework. In 2000, Harrold [3]
established the “development of techniques and tools for use
in estimating, predicting, and performing testing” as a key
research objective for future software testing research. Seven
years later, Bertolino [4] corroborated that “we will need to
make the process of testing more effective, predictable and
effortless”. Yet today, Whalen [5] observes “there is no sound
basis to extrapolate from tested to untested cases”.4

4In the quotes, the emphasis in italic letters is mine.
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ABSTRACT
For any errorless fuzzing campaign, no matter how long, there is
always some residual risk that a software error would be discovered
if only the campaign was run for just a bit longer. Recently, greybox
fuzzing tools have foundwidespread adoption. Yet, practitioners can
only guess when the residual risk of a greybox fuzzing campaign
falls below a specific, maximum allowable threshold.

In this paper, we explain why residual risk cannot be directly
estimated for greybox campaigns, argue that the discovery proba-
bility (i.e., the probability that the next generated input increases
code coverage) provides an excellent upper bound, and explore
sound statistical methods to estimate the discovery probability in
an ongoing greybox campaign. We find that estimators for blackbox
fuzzing systematically and substantially under-estimate the true
risk. An engineer—who stops the campaign when the estimators
purport a risk below the maximum allowable risk—is vastly misled.
She might need execute a campaign that is orders of magnitude
longer to achieve the allowable risk. Hence, the key challenge we
address in this paper is adaptive bias: The probability to discover a
specific error actually increases over time. We provide the first prob-
abilistic analysis of adaptive bias, and introduce two novel classes
of estimators that tackle adaptive bias. With our estimators, the
engineer can decide with confidence when to abort the campaign.

CCS CONCEPTS
• Security and privacy→ Software and application security; •
Software and its engineering→ Software testing and debugging.

KEYWORDS
software testing, statistics, estimation, assurance, correctness
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1 INTRODUCTION
On the one hand, we have software verification which allows to
demonstrate the correctness of the program for all inputs. On the
other hand, we have software testing which can demonstrate the
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Figure 1: In greybox fuzzing, the probability 𝑝bug to generate
a bug-revealing input (dashed line) increases as 𝑛 increases.
The probability Δ(𝑛) that the (𝑛 + 1)-th input is coverage-
increasing (solid line) provides an upper bound on the prob-
ability (residual risk) that it is the first bug-revealing input.
The vertical line is when we expect the first bug-rev. input.

correctness of the program only for some inputs. While verifica-
tion provides much stronger correctness guarantees, it is greybox
fuzzing, a specific form of software testing, which has found wide-
spread adoption in industry [24–26].

From a fuzzing campaign that has found no bugs, can we derive
some statement about the correctness of the program? Fuzzing
being a random process, it should be possible to derive statistical
claims about the probability that the next generated input is the
first bug-revealing input. We call this probability the residual risk.
We know how to quantify residual risk for whitebox fuzzing (using
model counting) [10] and blackbox fuzzing (using estimation) [1],
but not for greybox fuzzing—which has emerged as the state-of-
the-art in automated vulnerability discovery.

Greybox fuzzing is subject to adaptive bias, i.e., the probability
to generate a bug-revealing input actually increases throughout the
fuzzing campaign.1 Figure 1 shows simulation results for greybox
fuzzing. As more seeds become available, the bug probability 𝑝bug
increased (dashed line). In contrast, blackbox fuzzing is not subject
to adaptive bias and the probability to generate a bug-revealing
input remains constant throughout the campaign. If this was the
case for greybox fuzzing, we could cast residual risk estimation as
a sunrise problem2 and employ the well-known Laplace estimator.
However, in our experiments we find that, in the presence of adap-
tive bias, the Laplace estimator severely under-estimate the residual
risk for greybox campaigns. The true risk is orders of magnitude
higher than the estimator purports. A practitioner would abort the
campaign many days earlier than necessary, and assume a higher
degree of confidence in the correctness than warranted.

1We mean the probability 𝑝bug to generate any bug-revealing input, not just the first.
2The sunrise problem is the following riddle: "Suppose, we have seen the sun rise ever
since we were born 𝑁 days, ago. What is the probability that the sun rises tomorrow?"
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ABSTRACT
Given a target program state (or statement) 𝑠 , what is the proba-
bility that an input reaches 𝑠? This is the quantitative reachability
analysis problem. For instance, quantitative reachability analysis
can be used to approximate the reliability of a program (where 𝑠
is a bad state). Traditionally, quantitative reachability analysis is
solved as a model counting problem for a formal constraint that
represents the (approximate) reachability of 𝑠 along paths in the
program, i.e., probabilistic reachability analysis. However, in pre-
liminary experiments, we failed to run state-of-the-art probabilistic
reachability analysis on reasonably large programs.

In this paper, we explore statistical methods to estimate reach-
ability probability. An advantage of statistical reasoning is that
the size and composition of the program are insubstantial as long
as the program can be executed. We are particularly interested in
the error compared to the state-of-the-art probabilistic reachabil-
ity analysis. We realize that existing estimators do not exploit the
inherent structure of the program and develop structure-aware
estimators to further reduce the estimation error given the same
number of samples. Our empirical evaluation on previous and new
benchmark programs shows that (i) our statistical reachability anal-
ysis outperforms state-of-the-art probabilistic reachability analysis
tools in terms of accuracy, efficiency, and scalability, and (ii) our
structure-aware estimators further outperform (blackbox) estima-
tors that do not exploit the inherent program structure. We also
identify multiple program properties that limit the applicability of
the existing probabilistic analysis techniques.
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Reaching probability, Markov chain
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1 INTRODUCTION
The traditional assessment of the reachability of a program state
provides only a true-false answer: either the state is reachable
(e.g., the program may crash for some input) or not (e.g., it never
crashes for any input). Due to the undecidability of the analysis
problem [16] and the restricted expressiveness of the analysis result,
such a binary answer provides only limited information. Instead
of a binary answer, quantitative reachability analysis provides the
probability of how likely a certain program state is reached given
the workload of the program. Such a quantitative measure of reach-
ability can provide more comprehensive information about the
program semantics. For instance, it can estimate how probable is
to reach a crashing state under normal workload, which can be
critical information for software reliability/security/maintenance.

The typical method considered for quantitative reachability anal-
ysis is called probabilistic reachability analysis [26], which analyt-
ically computes the reaching probability directly from the source
code. Probabilistic Symbolic Execution (PSE), the pioneering work
by Geldenhuys et al. [12], computes the reaching probability of a
program state by finding all the path conditions to reach the state
using symbolic execution and counting the number of inputs satisfy-
ing the path conditions using model counting; the sum of the proba-
bilities becomes the exact reaching probability of the program state.
As PSE may suffer from scalability issues for a large and complex
program, many follow-up works have been proposed to improve
the scalability of probabilistic reachability analysis [11, 13]. Most
recently, Saha et al. proposed PReach which computes the reaching
probability using branch-level probability information [26].

When facing a problem too complex for the analytical method,
especially when it is unmanageable to compute a quantity exactly,
a sampling-based statistical method can be used to overcome the
limitation [4]. It is well-known that Monte Carlo methods have
been successfully applied to numerous problems across various
fields, including natural sciences [10] and engineering [22], where
the solution is intractable for analytic computation. Recently, in
the context of program analysis, Liyanage et al. [20] proposed a
statistical method to approximate the number of elements that can
be reached by actual program execution, which, previously, can
only be upper-bounded by static analysis.

This work explores how the statistical method can be applied to
quantitative reachability analysis. We propose a statistical reach-
ability analysis, which tackles the quantitative reachability analy-
sis problem with random sampling and statistical modeling. The
main issue of statistical reachability analysis is how to estimate
the reaching probability of a certain program state that has not
yet been observed in the sampling process. To overcome this issue,
we first suggest a naive approach of using two well-known esti-
mators, Laplace smoothing and Good-Turing estimator [15], that
can estimate the non-zero probability of unseen events from the
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ABSTRACT
A fuzzer can literally run forever. However, as more resources are
spent, the coverage rate continuously drops, and the utility of the
fuzzer declines. To tackle this coverage-resource tradeoff, we could
introduce a policy to stop a campaign whenever the coverage rate
drops below a certain threshold value, say 10 new branches covered
per 15 minutes. During the campaign, can we predict the coverage
rate at some point in the future? If so, how well can we predict the
future coverage rate as the prediction horizon or the current cam-
paign length increases? How can we tackle the statistical challenge
of adaptive bias, which is inherent in greybox fuzzing (i.e., samples
are not independent and identically distributed)?

In this paper, we i) evaluate existing statistical techniques to
predict the coverage rate𝑈 (𝑡0 + 𝑘) at any time 𝑡0 in the campaign
after a period of 𝑘 units of time in the future and ii) develop a new
extrapolation methodology that tackles the adaptive bias. We pro-
pose to efficiently simulate a large number of blackbox campaigns
from the collected coverage data, estimate the coverage rate for
each of these blackbox campaigns and conduct a simple regression
to extrapolate the coverage rate for the greybox campaign.

Our empirical evaluation using the Fuzztastic fuzzer benchmark
demonstrates that our extrapolation methodology exhibits at least
one order of magnitude lower error compared to the existing bench-
mark for 4 out of 5 experimental subjects we investigated. Notably,
compared to the existing extrapolation methodology, our extrapola-
tor excels in making long-term predictions, such as those extending
up to three times the length of the current campaign.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Security and privacy→ Software security engineering.

KEYWORDS
greybox fuzzing, extrapolation, coverage rate, adaptive bias, statis-
tical method
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1 INTRODUCTION
At the turn of the millennium, the late Mary-Jean Harrold drew a
research roadmap for the software testing community of the future
[13]. She highlighted the "development of techniques and tools for
use in estimating, predicting, and performing testing on evolving
software systems" as one of five research pointers. While there has
been some recent progress in the estimation of pertinent quantities
in the testing process, we have yet to start exploring methodologies
for prediction.

The rate at which new coverage is achieved is considered a fun-
damental measure of the efficiency of a fuzzing campaign. A fuzzer
is an automated software testing tool, and with increasing cover-
age, we mean the generation of inputs that cover new program
elements, such as a branch or a statement. If the coverage rate drops
below a certain threshold, the tester will abort the ongoing fuzzing
campaign for the lack of progress. Terminating a fuzzing campaign
early will help release computational resources and reduce the car-
bon footprint [17, 26]. If, throughout the campaign, the tester could
accurately predict the coverage rate at some point in the future,
they could conduct a cost-benefit analysis to assess the resources
required to achieve the targeted testing progress. Since fuzzing is a
preliminary testing technique that constitutes sophisticated testing
frameworks (e.g., a hybrid/ensemble fuzzing, an automated test
case generation framework, etc.), such a prediction would allow the
tester to adequately allocate resources (time and computing power)
for the entire testing process in advance [29].

One of the most successful fuzzing techniques is called greybox
fuzzing, which takes a mutation-based, coverage-guided approach.
A greybox fuzzer is mutation-based because it uses a corpus of pro-
gram inputs that are randomly mutated to slightly corrupt the seed
file while preserving much of the unknown but required input for-
mat. A greybox fuzzer is coverage-guided because it adds generated
inputs to the corpus that have been observed to increase coverage.
The hope is that an input generated from a coverage-increasing
input is itself more likely coverage-increasing. Since the probability
of covering a specific program element changes in this process, the
underlying distribution over these elements is not invariant. How-
ever, invariance is a key assumption in most statistical estimation
and extrapolation methodologies. Hence, a key statistical challenge
in the domain of greybox fuzzing is thus to tackle the resulting
adaptive bias.

In this paper, we introduce a novel extrapolation methodology
that allows us to predict the coverage rate𝑈 (𝑡0 +𝑚𝑡0) in a greybox
campaign of length 𝑡0 if the campaign length was extended𝑚 more
times while accounting for adaptive bias. We systematically select
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ABSTRACT

The missing mass refers to the proportion of data points in an unknown popula-
tion of classifier inputs that belong to classes not present in the classifier’s training
data, which is assumed to be a random sample from that unknown population. We
find that in expectation the missing mass is entirely determined by the number
fk of classes that do appear in the training data the same number of times and
an exponentially decaying error. While this is the first precise characterization
of the expected missing mass in terms of the sample, the induced estimator suf-
fers from an impractically high variance. However, our theory suggests a large
search space of nearly unbiased estimators that can be searched effectively and
efficiently. Hence, we cast distribution-free estimation as an optimization prob-
lem to find a distribution-specific estimator with a minimized mean-squared error
(MSE), given only the sample. In our experiments, our search algorithm discovers
estimators that have a substantially smaller MSE than the state-of-the-art Good-
Turing estimator. This holds for over 93% of runs when there are at least as many
samples as classes. Our estimators’ MSE is roughly 80% of the Good-Turing
estimator’s.

1 INTRODUCTION

How can we extrapolate from properties of the training data to properties of the unseen, underlying
distribution of the data? This is a fundamental question in machine learning (Orlitsky et al., 2003;
Orlitsky & Suresh, 2015; Painsky, 2022; Acharya et al., 2013; Hao & Li, 2020). The probability that
a data point belongs to a class that does not exist in the training data is also known as the missing
probability mass since empirically the entire probability mass is distributed over classes that do exist
in the training data. For instance, the missing mass measures how representative the training data
is of the unknown distribution. If the missing mass is high, the training is not very representative,
and a trained classifier is unlikely to predict the correct class. If we manually label training data, the
missing mass also measures saturation. We may decide that the labeling effort has been sufficient
and saturation has been reached when the missing mass is below a certain threshold.

1.1 BACKGROUND

Consider a multinomial distribution p = hp1, · · · pSi over a support set X where support size S = |X |

and probability values are unknown. Let Xn = hX1, · · ·Xni be a set of independent and identically
distributed random variables representing the sequence of elements observed in n samples from p.
Let Nx be the number of times element x 2 X is observed in the sample X

n. For k : 0  k  n,
let �k be the number of elements appearing exactly k times in X

n, i.e., Nx =
Pn

i=1 1(Xi = x) and
�k =

P
x2X 1(Nx = k). Let fk(n) be the expected value of �k (Good, 1953), i.e.,

fk(n) =

 
n

k

!
X

x2X
p
k
x(1� px)

n�k = E [�k] (1)

Estimating rare/unobserved px. We cannot expect all elements to exist in X
n. While the empirical

estimator p̂Emp
x = Nx/n is generally unbiased, p̂Emp

x distributes the entire probability mass only over

1
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STADS: So�ware Testing as Species Discovery
Spatial and Temporal Extrapolation from Tested Program Behaviors

MARCEL BÖHME∗, National University of Singapore and Monash University, Australia

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program
behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has
currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has
been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the
coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no
vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if
the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.

In this article, I establish an unexpected connection with the otherwise unrelated scienti�c �eld of ecology,
and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species
(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists
would �rst sample a large number of individuals from that forest, determine their species, and extrapolate
from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total
number of species, (ii) of the additional sampling e�ort required to discover 10% more species, or (iii) of the
probability to discover a new species are classical problems in ecology. The STADS framework draws from
over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge
for automated test generation. Our preliminary empirical study demonstrates a good estimator performance
even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS
framework provides statistical correctness guarantees with quanti�able accuracy.

CCS Concepts: • Security and privacy→ Penetration testing; • Software and its engineering→ Soft-
ware testing and debugging;

Additional Key Words and Phrases: Statistical guarantees, extrapolation, fuzzing, stopping rule, code coverage,
species coverage, discovery probability, security, reliability, measure of con�dence, measure of progress
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1 INTRODUCTION
The development of automated and practical approaches to vulnerability detection has never
been more important. The recent world-wide WannaCry cyber-epidemic clearly demonstrates the
vulnerability of our well-connected software systems. WannaCry exploits a software vulnerability
on Windows machines to gain root access on a huge number of computers all over the world. The
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Abstract—As researchers, we already understand how to make
testing more effective and efficient at finding bugs. However, as
fuzzing (i.e., automated testing) becomes more widely adopted
in practice, practitioners are asking: Which assurances does a
fuzzing campaign provide that exposes no bugs? When is it safe
to stop the fuzzer with a reasonable residual risk? How much
longer should the fuzzer be run to achieve sufficient coverage?

It is time for us to move beyond the innovation of increasingly
sophisticated testing techniques, to build a body of knowledge
around the explication and quantification of the testing process,
and to develop sound methodologies to estimate and extrapolate
these quantities with measurable accuracy. In our vision of the
future practitioners leverage a rich statistical toolset to assess
residual risk, to obtain statistical guarantees, and to analyze
the cost-benefit trade-off for ongoing fuzzing campaigns. We
propose a general framework as a first starting point to tackle this
fundamental challenge and discuss a large number of concrete
opportunities for future research.

I. INTRODUCTION

Cognitive psychology tells us that the unaided human mind is
vulnerable to many fallacies and illusions because of its reliance
on its memory for vivid anecdotes rather than systematic statistics.

— Prof. Steven Pinker (Dep. of Psychology at Harvard)

A. A Vivid Anecdote

Last year, we attended a meeting with several representatives
of a large company that provides security assessment services
for governments and industries worldwide. In preparation for
this meeting, we learned about their product portfolio and found
that their main product, a protocol-based blackbox fuzzer,1
can be used for security certification of medical devices (IEC
62443-4-2).2 While the fuzzer is part of a larger certification
process,3 it is primarily the fuzzer’s task to identify vulnera-
bilities that could be exploited remotely over the network.

Now, medical devices are safety-critical systems and un-
detected vulnerabilities can be life threatening. For instance,
Halperin et al. [2] describe several attacks on an implantable
cardioverter defibrillator to control when electrical shocks are
administered to the patient’s heart. Hence, subjecting medical
devices to rigorous cyber security assessment is a powerful
mitigator of cyber risks. This inspires trust in the certificate.

1We shall use the terms fuzzing and automated testing interchangeably.
2The assessment scheme for IEC 62443, the worldwide standard for security

of Industrial Control Systems, is operated by the ISA Security Compliance
Institute and offered within the Embedded Device Security Assurance (EDSA)
product which ascertains compliance with IEC 62443-4-2 [1].

3The ISASecure EDSA certification also requires that the organization
follows a robust, secure software development process and that the product
has properly implemented the security-related functional requirements.

A violation of this trust (e.g., if an attacker exploited an
undetected vulnerability in a medical device that is certified)
would be disastrous. Thus, the company’s reputation and
the certificate’s credibility depend, at least in part, on the
assurances which the fuzzer provides.

We walked into that meeting wondering about this question.
Which assurances are derived for the certificate from applying
the company’s fuzzer? To paraphrase Djikstra, fuzzing can be
used only to show the presence of vulnerabilities, not their
absence. How do they effectively assess the residual risk of a
fuzzing campaign that finds no vulnerabilities? How do they
arrive at the decision to stop the fuzzer and to proceed with
the certification? It turns out that the certification scheme does
not specify how much fuzzing is sufficient for certification.
Neither does it specify a concrete value for the allowable
residual risk that an undiscovered vulnerability still exists. In
practice, the decision is with the individual security researcher.
Even if a concrete threshold value was specified, there is no
statistical framework available that would allow the researcher
to quantify the residual risk for an ongoing campaign [3]–[5].

In the end, we were told, the decision is mostly based on
experience. Clearly, a long-running fuzzing campaign provides
much stronger assurances than a shorter one; meaning, the
residual risk decreases as the length of the campaign increases.
Hence, intuitively there is a particular point in time when it
is both economical and safe to abort a fuzzing campaign that
has found no vulnerabilities.

B. Call for Systematic Statistics
In this paper, we argue that we ought to do better than

relying on an individual’s experience. The security researcher
should be able to systematically assess and quantify the
inherent uncertainty. The certification authority should be
able to provide concrete guidance in the form of measurable
threshold values. This offers an opportunity for us as software
engineering researchers to develop a rich statistical toolset that
will enable software engineering practitioners to assess and
quantify the automated testing process.

Senior members of our community have previously called
for a general statistical framework. In 2000, Harrold [3]
established the “development of techniques and tools for use
in estimating, predicting, and performing testing” as a key
research objective for future software testing research. Seven
years later, Bertolino [4] corroborated that “we will need to
make the process of testing more effective, predictable and
effortless”. Yet today, Whalen [5] observes “there is no sound
basis to extrapolate from tested to untested cases”.4

4In the quotes, the emphasis in italic letters is mine.

5

2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER)

978-1-7281-1758-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-NIER.2019.00010

Estimating Residual Risk in Greybox Fuzzing

Marcel Böhme
Monash University, Australia

MPI-SP, Germany

Danushka Liyanage
Monash University

Australia

Valentin Wüstholz
ConsenSys
Germany

ABSTRACT
For any errorless fuzzing campaign, no matter how long, there is
always some residual risk that a software error would be discovered
if only the campaign was run for just a bit longer. Recently, greybox
fuzzing tools have foundwidespread adoption. Yet, practitioners can
only guess when the residual risk of a greybox fuzzing campaign
falls below a specific, maximum allowable threshold.

In this paper, we explain why residual risk cannot be directly
estimated for greybox campaigns, argue that the discovery proba-
bility (i.e., the probability that the next generated input increases
code coverage) provides an excellent upper bound, and explore
sound statistical methods to estimate the discovery probability in
an ongoing greybox campaign. We find that estimators for blackbox
fuzzing systematically and substantially under-estimate the true
risk. An engineer—who stops the campaign when the estimators
purport a risk below the maximum allowable risk—is vastly misled.
She might need execute a campaign that is orders of magnitude
longer to achieve the allowable risk. Hence, the key challenge we
address in this paper is adaptive bias: The probability to discover a
specific error actually increases over time. We provide the first prob-
abilistic analysis of adaptive bias, and introduce two novel classes
of estimators that tackle adaptive bias. With our estimators, the
engineer can decide with confidence when to abort the campaign.
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• Security and privacy→ Software and application security; •
Software and its engineering→ Software testing and debugging.

KEYWORDS
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1 INTRODUCTION
On the one hand, we have software verification which allows to
demonstrate the correctness of the program for all inputs. On the
other hand, we have software testing which can demonstrate the
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Figure 1: In greybox fuzzing, the probability 𝑝bug to generate
a bug-revealing input (dashed line) increases as 𝑛 increases.
The probability Δ(𝑛) that the (𝑛 + 1)-th input is coverage-
increasing (solid line) provides an upper bound on the prob-
ability (residual risk) that it is the first bug-revealing input.
The vertical line is when we expect the first bug-rev. input.

correctness of the program only for some inputs. While verifica-
tion provides much stronger correctness guarantees, it is greybox
fuzzing, a specific form of software testing, which has found wide-
spread adoption in industry [24–26].

From a fuzzing campaign that has found no bugs, can we derive
some statement about the correctness of the program? Fuzzing
being a random process, it should be possible to derive statistical
claims about the probability that the next generated input is the
first bug-revealing input. We call this probability the residual risk.
We know how to quantify residual risk for whitebox fuzzing (using
model counting) [10] and blackbox fuzzing (using estimation) [1],
but not for greybox fuzzing—which has emerged as the state-of-
the-art in automated vulnerability discovery.

Greybox fuzzing is subject to adaptive bias, i.e., the probability
to generate a bug-revealing input actually increases throughout the
fuzzing campaign.1 Figure 1 shows simulation results for greybox
fuzzing. As more seeds become available, the bug probability 𝑝bug
increased (dashed line). In contrast, blackbox fuzzing is not subject
to adaptive bias and the probability to generate a bug-revealing
input remains constant throughout the campaign. If this was the
case for greybox fuzzing, we could cast residual risk estimation as
a sunrise problem2 and employ the well-known Laplace estimator.
However, in our experiments we find that, in the presence of adap-
tive bias, the Laplace estimator severely under-estimate the residual
risk for greybox campaigns. The true risk is orders of magnitude
higher than the estimator purports. A practitioner would abort the
campaign many days earlier than necessary, and assume a higher
degree of confidence in the correctness than warranted.

1We mean the probability 𝑝bug to generate any bug-revealing input, not just the first.
2The sunrise problem is the following riddle: "Suppose, we have seen the sun rise ever
since we were born 𝑁 days, ago. What is the probability that the sun rises tomorrow?"

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

230

Statistical Reachability Analysis

Seongmin Lee
Max Planck Institute for Security and Privacy

Bochum, Germany
seongmin.lee@mpi-sp.org

Marcel Böhme
Max Planck Institute for Security and Privacy

Bochum, Germany
marcel.boehme@acm.org

ABSTRACT
Given a target program state (or statement) 𝑠 , what is the proba-
bility that an input reaches 𝑠? This is the quantitative reachability
analysis problem. For instance, quantitative reachability analysis
can be used to approximate the reliability of a program (where 𝑠
is a bad state). Traditionally, quantitative reachability analysis is
solved as a model counting problem for a formal constraint that
represents the (approximate) reachability of 𝑠 along paths in the
program, i.e., probabilistic reachability analysis. However, in pre-
liminary experiments, we failed to run state-of-the-art probabilistic
reachability analysis on reasonably large programs.

In this paper, we explore statistical methods to estimate reach-
ability probability. An advantage of statistical reasoning is that
the size and composition of the program are insubstantial as long
as the program can be executed. We are particularly interested in
the error compared to the state-of-the-art probabilistic reachabil-
ity analysis. We realize that existing estimators do not exploit the
inherent structure of the program and develop structure-aware
estimators to further reduce the estimation error given the same
number of samples. Our empirical evaluation on previous and new
benchmark programs shows that (i) our statistical reachability anal-
ysis outperforms state-of-the-art probabilistic reachability analysis
tools in terms of accuracy, efficiency, and scalability, and (ii) our
structure-aware estimators further outperform (blackbox) estima-
tors that do not exploit the inherent program structure. We also
identify multiple program properties that limit the applicability of
the existing probabilistic analysis techniques.
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• Theory of computation→ Program analysis; •Mathematics
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Reaching probability, Markov chain
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1 INTRODUCTION
The traditional assessment of the reachability of a program state
provides only a true-false answer: either the state is reachable
(e.g., the program may crash for some input) or not (e.g., it never
crashes for any input). Due to the undecidability of the analysis
problem [16] and the restricted expressiveness of the analysis result,
such a binary answer provides only limited information. Instead
of a binary answer, quantitative reachability analysis provides the
probability of how likely a certain program state is reached given
the workload of the program. Such a quantitative measure of reach-
ability can provide more comprehensive information about the
program semantics. For instance, it can estimate how probable is
to reach a crashing state under normal workload, which can be
critical information for software reliability/security/maintenance.

The typical method considered for quantitative reachability anal-
ysis is called probabilistic reachability analysis [26], which analyt-
ically computes the reaching probability directly from the source
code. Probabilistic Symbolic Execution (PSE), the pioneering work
by Geldenhuys et al. [12], computes the reaching probability of a
program state by finding all the path conditions to reach the state
using symbolic execution and counting the number of inputs satisfy-
ing the path conditions using model counting; the sum of the proba-
bilities becomes the exact reaching probability of the program state.
As PSE may suffer from scalability issues for a large and complex
program, many follow-up works have been proposed to improve
the scalability of probabilistic reachability analysis [11, 13]. Most
recently, Saha et al. proposed PReach which computes the reaching
probability using branch-level probability information [26].

When facing a problem too complex for the analytical method,
especially when it is unmanageable to compute a quantity exactly,
a sampling-based statistical method can be used to overcome the
limitation [4]. It is well-known that Monte Carlo methods have
been successfully applied to numerous problems across various
fields, including natural sciences [10] and engineering [22], where
the solution is intractable for analytic computation. Recently, in
the context of program analysis, Liyanage et al. [20] proposed a
statistical method to approximate the number of elements that can
be reached by actual program execution, which, previously, can
only be upper-bounded by static analysis.

This work explores how the statistical method can be applied to
quantitative reachability analysis. We propose a statistical reach-
ability analysis, which tackles the quantitative reachability analy-
sis problem with random sampling and statistical modeling. The
main issue of statistical reachability analysis is how to estimate
the reaching probability of a certain program state that has not
yet been observed in the sampling process. To overcome this issue,
we first suggest a naive approach of using two well-known esti-
mators, Laplace smoothing and Good-Turing estimator [15], that
can estimate the non-zero probability of unseen events from the
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ABSTRACT
A fuzzer can literally run forever. However, as more resources are
spent, the coverage rate continuously drops, and the utility of the
fuzzer declines. To tackle this coverage-resource tradeoff, we could
introduce a policy to stop a campaign whenever the coverage rate
drops below a certain threshold value, say 10 new branches covered
per 15 minutes. During the campaign, can we predict the coverage
rate at some point in the future? If so, how well can we predict the
future coverage rate as the prediction horizon or the current cam-
paign length increases? How can we tackle the statistical challenge
of adaptive bias, which is inherent in greybox fuzzing (i.e., samples
are not independent and identically distributed)?

In this paper, we i) evaluate existing statistical techniques to
predict the coverage rate𝑈 (𝑡0 + 𝑘) at any time 𝑡0 in the campaign
after a period of 𝑘 units of time in the future and ii) develop a new
extrapolation methodology that tackles the adaptive bias. We pro-
pose to efficiently simulate a large number of blackbox campaigns
from the collected coverage data, estimate the coverage rate for
each of these blackbox campaigns and conduct a simple regression
to extrapolate the coverage rate for the greybox campaign.

Our empirical evaluation using the Fuzztastic fuzzer benchmark
demonstrates that our extrapolation methodology exhibits at least
one order of magnitude lower error compared to the existing bench-
mark for 4 out of 5 experimental subjects we investigated. Notably,
compared to the existing extrapolation methodology, our extrapola-
tor excels in making long-term predictions, such as those extending
up to three times the length of the current campaign.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Security and privacy→ Software security engineering.

KEYWORDS
greybox fuzzing, extrapolation, coverage rate, adaptive bias, statis-
tical method
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1 INTRODUCTION
At the turn of the millennium, the late Mary-Jean Harrold drew a
research roadmap for the software testing community of the future
[13]. She highlighted the "development of techniques and tools for
use in estimating, predicting, and performing testing on evolving
software systems" as one of five research pointers. While there has
been some recent progress in the estimation of pertinent quantities
in the testing process, we have yet to start exploring methodologies
for prediction.

The rate at which new coverage is achieved is considered a fun-
damental measure of the efficiency of a fuzzing campaign. A fuzzer
is an automated software testing tool, and with increasing cover-
age, we mean the generation of inputs that cover new program
elements, such as a branch or a statement. If the coverage rate drops
below a certain threshold, the tester will abort the ongoing fuzzing
campaign for the lack of progress. Terminating a fuzzing campaign
early will help release computational resources and reduce the car-
bon footprint [17, 26]. If, throughout the campaign, the tester could
accurately predict the coverage rate at some point in the future,
they could conduct a cost-benefit analysis to assess the resources
required to achieve the targeted testing progress. Since fuzzing is a
preliminary testing technique that constitutes sophisticated testing
frameworks (e.g., a hybrid/ensemble fuzzing, an automated test
case generation framework, etc.), such a prediction would allow the
tester to adequately allocate resources (time and computing power)
for the entire testing process in advance [29].

One of the most successful fuzzing techniques is called greybox
fuzzing, which takes a mutation-based, coverage-guided approach.
A greybox fuzzer is mutation-based because it uses a corpus of pro-
gram inputs that are randomly mutated to slightly corrupt the seed
file while preserving much of the unknown but required input for-
mat. A greybox fuzzer is coverage-guided because it adds generated
inputs to the corpus that have been observed to increase coverage.
The hope is that an input generated from a coverage-increasing
input is itself more likely coverage-increasing. Since the probability
of covering a specific program element changes in this process, the
underlying distribution over these elements is not invariant. How-
ever, invariance is a key assumption in most statistical estimation
and extrapolation methodologies. Hence, a key statistical challenge
in the domain of greybox fuzzing is thus to tackle the resulting
adaptive bias.

In this paper, we introduce a novel extrapolation methodology
that allows us to predict the coverage rate𝑈 (𝑡0 +𝑚𝑡0) in a greybox
campaign of length 𝑡0 if the campaign length was extended𝑚 more
times while accounting for adaptive bias. We systematically select
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Why?
HOW MUCH IS UNSEEN DEPENDS CHIEFLY ON
INFORMATION ABOUT THE SEEN

Seongmin Lee and Marcel Böhme

MPI for Security and Privacy, Germany
{seongmin.lee,marcel.boehme}@mpi-sp.org

ABSTRACT

The missing mass refers to the proportion of data points in an unknown popula-
tion of classifier inputs that belong to classes not present in the classifier’s training
data, which is assumed to be a random sample from that unknown population. We
find that in expectation the missing mass is entirely determined by the number
fk of classes that do appear in the training data the same number of times and
an exponentially decaying error. While this is the first precise characterization
of the expected missing mass in terms of the sample, the induced estimator suf-
fers from an impractically high variance. However, our theory suggests a large
search space of nearly unbiased estimators that can be searched effectively and
efficiently. Hence, we cast distribution-free estimation as an optimization prob-
lem to find a distribution-specific estimator with a minimized mean-squared error
(MSE), given only the sample. In our experiments, our search algorithm discovers
estimators that have a substantially smaller MSE than the state-of-the-art Good-
Turing estimator. This holds for over 93% of runs when there are at least as many
samples as classes. Our estimators’ MSE is roughly 80% of the Good-Turing
estimator’s.

1 INTRODUCTION

How can we extrapolate from properties of the training data to properties of the unseen, underlying
distribution of the data? This is a fundamental question in machine learning (Orlitsky et al., 2003;
Orlitsky & Suresh, 2015; Painsky, 2022; Acharya et al., 2013; Hao & Li, 2020). The probability that
a data point belongs to a class that does not exist in the training data is also known as the missing
probability mass since empirically the entire probability mass is distributed over classes that do exist
in the training data. For instance, the missing mass measures how representative the training data
is of the unknown distribution. If the missing mass is high, the training is not very representative,
and a trained classifier is unlikely to predict the correct class. If we manually label training data, the
missing mass also measures saturation. We may decide that the labeling effort has been sufficient
and saturation has been reached when the missing mass is below a certain threshold.

1.1 BACKGROUND

Consider a multinomial distribution p = hp1, · · · pSi over a support set X where support size S = |X |

and probability values are unknown. Let Xn = hX1, · · ·Xni be a set of independent and identically
distributed random variables representing the sequence of elements observed in n samples from p.
Let Nx be the number of times element x 2 X is observed in the sample X

n. For k : 0  k  n,
let �k be the number of elements appearing exactly k times in X

n, i.e., Nx =
Pn

i=1 1(Xi = x) and
�k =

P
x2X 1(Nx = k). Let fk(n) be the expected value of �k (Good, 1953), i.e.,

fk(n) =

 
n

k

!
X

x2X
p
k
x(1� px)

n�k = E [�k] (1)

Estimating rare/unobserved px. We cannot expect all elements to exist in X
n. While the empirical

estimator p̂Emp
x = Nx/n is generally unbiased, p̂Emp

x distributes the entire probability mass only over

1
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STADS: So�ware Testing as Species Discovery
Spatial and Temporal Extrapolation from Tested Program Behaviors

MARCEL BÖHME∗, National University of Singapore and Monash University, Australia

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program
behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has
currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has
been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the
coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no
vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if
the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.

In this article, I establish an unexpected connection with the otherwise unrelated scienti�c �eld of ecology,
and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species
(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists
would �rst sample a large number of individuals from that forest, determine their species, and extrapolate
from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total
number of species, (ii) of the additional sampling e�ort required to discover 10% more species, or (iii) of the
probability to discover a new species are classical problems in ecology. The STADS framework draws from
over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge
for automated test generation. Our preliminary empirical study demonstrates a good estimator performance
even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS
framework provides statistical correctness guarantees with quanti�able accuracy.

CCS Concepts: • Security and privacy→ Penetration testing; • Software and its engineering→ Soft-
ware testing and debugging;

Additional Key Words and Phrases: Statistical guarantees, extrapolation, fuzzing, stopping rule, code coverage,
species coverage, discovery probability, security, reliability, measure of con�dence, measure of progress
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1 INTRODUCTION
The development of automated and practical approaches to vulnerability detection has never
been more important. The recent world-wide WannaCry cyber-epidemic clearly demonstrates the
vulnerability of our well-connected software systems. WannaCry exploits a software vulnerability
on Windows machines to gain root access on a huge number of computers all over the world. The
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Assurance in Software Testing: A Roadmap
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Abstract—As researchers, we already understand how to make
testing more effective and efficient at finding bugs. However, as
fuzzing (i.e., automated testing) becomes more widely adopted
in practice, practitioners are asking: Which assurances does a
fuzzing campaign provide that exposes no bugs? When is it safe
to stop the fuzzer with a reasonable residual risk? How much
longer should the fuzzer be run to achieve sufficient coverage?

It is time for us to move beyond the innovation of increasingly
sophisticated testing techniques, to build a body of knowledge
around the explication and quantification of the testing process,
and to develop sound methodologies to estimate and extrapolate
these quantities with measurable accuracy. In our vision of the
future practitioners leverage a rich statistical toolset to assess
residual risk, to obtain statistical guarantees, and to analyze
the cost-benefit trade-off for ongoing fuzzing campaigns. We
propose a general framework as a first starting point to tackle this
fundamental challenge and discuss a large number of concrete
opportunities for future research.

I. INTRODUCTION

Cognitive psychology tells us that the unaided human mind is
vulnerable to many fallacies and illusions because of its reliance
on its memory for vivid anecdotes rather than systematic statistics.

— Prof. Steven Pinker (Dep. of Psychology at Harvard)

A. A Vivid Anecdote

Last year, we attended a meeting with several representatives
of a large company that provides security assessment services
for governments and industries worldwide. In preparation for
this meeting, we learned about their product portfolio and found
that their main product, a protocol-based blackbox fuzzer,1
can be used for security certification of medical devices (IEC
62443-4-2).2 While the fuzzer is part of a larger certification
process,3 it is primarily the fuzzer’s task to identify vulnera-
bilities that could be exploited remotely over the network.

Now, medical devices are safety-critical systems and un-
detected vulnerabilities can be life threatening. For instance,
Halperin et al. [2] describe several attacks on an implantable
cardioverter defibrillator to control when electrical shocks are
administered to the patient’s heart. Hence, subjecting medical
devices to rigorous cyber security assessment is a powerful
mitigator of cyber risks. This inspires trust in the certificate.

1We shall use the terms fuzzing and automated testing interchangeably.
2The assessment scheme for IEC 62443, the worldwide standard for security

of Industrial Control Systems, is operated by the ISA Security Compliance
Institute and offered within the Embedded Device Security Assurance (EDSA)
product which ascertains compliance with IEC 62443-4-2 [1].

3The ISASecure EDSA certification also requires that the organization
follows a robust, secure software development process and that the product
has properly implemented the security-related functional requirements.

A violation of this trust (e.g., if an attacker exploited an
undetected vulnerability in a medical device that is certified)
would be disastrous. Thus, the company’s reputation and
the certificate’s credibility depend, at least in part, on the
assurances which the fuzzer provides.

We walked into that meeting wondering about this question.
Which assurances are derived for the certificate from applying
the company’s fuzzer? To paraphrase Djikstra, fuzzing can be
used only to show the presence of vulnerabilities, not their
absence. How do they effectively assess the residual risk of a
fuzzing campaign that finds no vulnerabilities? How do they
arrive at the decision to stop the fuzzer and to proceed with
the certification? It turns out that the certification scheme does
not specify how much fuzzing is sufficient for certification.
Neither does it specify a concrete value for the allowable
residual risk that an undiscovered vulnerability still exists. In
practice, the decision is with the individual security researcher.
Even if a concrete threshold value was specified, there is no
statistical framework available that would allow the researcher
to quantify the residual risk for an ongoing campaign [3]–[5].

In the end, we were told, the decision is mostly based on
experience. Clearly, a long-running fuzzing campaign provides
much stronger assurances than a shorter one; meaning, the
residual risk decreases as the length of the campaign increases.
Hence, intuitively there is a particular point in time when it
is both economical and safe to abort a fuzzing campaign that
has found no vulnerabilities.

B. Call for Systematic Statistics
In this paper, we argue that we ought to do better than

relying on an individual’s experience. The security researcher
should be able to systematically assess and quantify the
inherent uncertainty. The certification authority should be
able to provide concrete guidance in the form of measurable
threshold values. This offers an opportunity for us as software
engineering researchers to develop a rich statistical toolset that
will enable software engineering practitioners to assess and
quantify the automated testing process.

Senior members of our community have previously called
for a general statistical framework. In 2000, Harrold [3]
established the “development of techniques and tools for use
in estimating, predicting, and performing testing” as a key
research objective for future software testing research. Seven
years later, Bertolino [4] corroborated that “we will need to
make the process of testing more effective, predictable and
effortless”. Yet today, Whalen [5] observes “there is no sound
basis to extrapolate from tested to untested cases”.4

4In the quotes, the emphasis in italic letters is mine.
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Estimating Residual Risk in Greybox Fuzzing
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ABSTRACT
For any errorless fuzzing campaign, no matter how long, there is
always some residual risk that a software error would be discovered
if only the campaign was run for just a bit longer. Recently, greybox
fuzzing tools have foundwidespread adoption. Yet, practitioners can
only guess when the residual risk of a greybox fuzzing campaign
falls below a specific, maximum allowable threshold.

In this paper, we explain why residual risk cannot be directly
estimated for greybox campaigns, argue that the discovery proba-
bility (i.e., the probability that the next generated input increases
code coverage) provides an excellent upper bound, and explore
sound statistical methods to estimate the discovery probability in
an ongoing greybox campaign. We find that estimators for blackbox
fuzzing systematically and substantially under-estimate the true
risk. An engineer—who stops the campaign when the estimators
purport a risk below the maximum allowable risk—is vastly misled.
She might need execute a campaign that is orders of magnitude
longer to achieve the allowable risk. Hence, the key challenge we
address in this paper is adaptive bias: The probability to discover a
specific error actually increases over time. We provide the first prob-
abilistic analysis of adaptive bias, and introduce two novel classes
of estimators that tackle adaptive bias. With our estimators, the
engineer can decide with confidence when to abort the campaign.

CCS CONCEPTS
• Security and privacy→ Software and application security; •
Software and its engineering→ Software testing and debugging.

KEYWORDS
software testing, statistics, estimation, assurance, correctness
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1 INTRODUCTION
On the one hand, we have software verification which allows to
demonstrate the correctness of the program for all inputs. On the
other hand, we have software testing which can demonstrate the
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Figure 1: In greybox fuzzing, the probability 𝑝bug to generate
a bug-revealing input (dashed line) increases as 𝑛 increases.
The probability Δ(𝑛) that the (𝑛 + 1)-th input is coverage-
increasing (solid line) provides an upper bound on the prob-
ability (residual risk) that it is the first bug-revealing input.
The vertical line is when we expect the first bug-rev. input.

correctness of the program only for some inputs. While verifica-
tion provides much stronger correctness guarantees, it is greybox
fuzzing, a specific form of software testing, which has found wide-
spread adoption in industry [24–26].

From a fuzzing campaign that has found no bugs, can we derive
some statement about the correctness of the program? Fuzzing
being a random process, it should be possible to derive statistical
claims about the probability that the next generated input is the
first bug-revealing input. We call this probability the residual risk.
We know how to quantify residual risk for whitebox fuzzing (using
model counting) [10] and blackbox fuzzing (using estimation) [1],
but not for greybox fuzzing—which has emerged as the state-of-
the-art in automated vulnerability discovery.

Greybox fuzzing is subject to adaptive bias, i.e., the probability
to generate a bug-revealing input actually increases throughout the
fuzzing campaign.1 Figure 1 shows simulation results for greybox
fuzzing. As more seeds become available, the bug probability 𝑝bug
increased (dashed line). In contrast, blackbox fuzzing is not subject
to adaptive bias and the probability to generate a bug-revealing
input remains constant throughout the campaign. If this was the
case for greybox fuzzing, we could cast residual risk estimation as
a sunrise problem2 and employ the well-known Laplace estimator.
However, in our experiments we find that, in the presence of adap-
tive bias, the Laplace estimator severely under-estimate the residual
risk for greybox campaigns. The true risk is orders of magnitude
higher than the estimator purports. A practitioner would abort the
campaign many days earlier than necessary, and assume a higher
degree of confidence in the correctness than warranted.

1We mean the probability 𝑝bug to generate any bug-revealing input, not just the first.
2The sunrise problem is the following riddle: "Suppose, we have seen the sun rise ever
since we were born 𝑁 days, ago. What is the probability that the sun rises tomorrow?"
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ABSTRACT
Given a target program state (or statement) 𝑠 , what is the proba-
bility that an input reaches 𝑠? This is the quantitative reachability
analysis problem. For instance, quantitative reachability analysis
can be used to approximate the reliability of a program (where 𝑠
is a bad state). Traditionally, quantitative reachability analysis is
solved as a model counting problem for a formal constraint that
represents the (approximate) reachability of 𝑠 along paths in the
program, i.e., probabilistic reachability analysis. However, in pre-
liminary experiments, we failed to run state-of-the-art probabilistic
reachability analysis on reasonably large programs.

In this paper, we explore statistical methods to estimate reach-
ability probability. An advantage of statistical reasoning is that
the size and composition of the program are insubstantial as long
as the program can be executed. We are particularly interested in
the error compared to the state-of-the-art probabilistic reachabil-
ity analysis. We realize that existing estimators do not exploit the
inherent structure of the program and develop structure-aware
estimators to further reduce the estimation error given the same
number of samples. Our empirical evaluation on previous and new
benchmark programs shows that (i) our statistical reachability anal-
ysis outperforms state-of-the-art probabilistic reachability analysis
tools in terms of accuracy, efficiency, and scalability, and (ii) our
structure-aware estimators further outperform (blackbox) estima-
tors that do not exploit the inherent program structure. We also
identify multiple program properties that limit the applicability of
the existing probabilistic analysis techniques.
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• Theory of computation→ Program analysis; •Mathematics
of computing → Bayesian computation.
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Reaching probability, Markov chain
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1 INTRODUCTION
The traditional assessment of the reachability of a program state
provides only a true-false answer: either the state is reachable
(e.g., the program may crash for some input) or not (e.g., it never
crashes for any input). Due to the undecidability of the analysis
problem [16] and the restricted expressiveness of the analysis result,
such a binary answer provides only limited information. Instead
of a binary answer, quantitative reachability analysis provides the
probability of how likely a certain program state is reached given
the workload of the program. Such a quantitative measure of reach-
ability can provide more comprehensive information about the
program semantics. For instance, it can estimate how probable is
to reach a crashing state under normal workload, which can be
critical information for software reliability/security/maintenance.

The typical method considered for quantitative reachability anal-
ysis is called probabilistic reachability analysis [26], which analyt-
ically computes the reaching probability directly from the source
code. Probabilistic Symbolic Execution (PSE), the pioneering work
by Geldenhuys et al. [12], computes the reaching probability of a
program state by finding all the path conditions to reach the state
using symbolic execution and counting the number of inputs satisfy-
ing the path conditions using model counting; the sum of the proba-
bilities becomes the exact reaching probability of the program state.
As PSE may suffer from scalability issues for a large and complex
program, many follow-up works have been proposed to improve
the scalability of probabilistic reachability analysis [11, 13]. Most
recently, Saha et al. proposed PReach which computes the reaching
probability using branch-level probability information [26].

When facing a problem too complex for the analytical method,
especially when it is unmanageable to compute a quantity exactly,
a sampling-based statistical method can be used to overcome the
limitation [4]. It is well-known that Monte Carlo methods have
been successfully applied to numerous problems across various
fields, including natural sciences [10] and engineering [22], where
the solution is intractable for analytic computation. Recently, in
the context of program analysis, Liyanage et al. [20] proposed a
statistical method to approximate the number of elements that can
be reached by actual program execution, which, previously, can
only be upper-bounded by static analysis.

This work explores how the statistical method can be applied to
quantitative reachability analysis. We propose a statistical reach-
ability analysis, which tackles the quantitative reachability analy-
sis problem with random sampling and statistical modeling. The
main issue of statistical reachability analysis is how to estimate
the reaching probability of a certain program state that has not
yet been observed in the sampling process. To overcome this issue,
we first suggest a naive approach of using two well-known esti-
mators, Laplace smoothing and Good-Turing estimator [15], that
can estimate the non-zero probability of unseen events from the
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ABSTRACT
A fuzzer can literally run forever. However, as more resources are
spent, the coverage rate continuously drops, and the utility of the
fuzzer declines. To tackle this coverage-resource tradeoff, we could
introduce a policy to stop a campaign whenever the coverage rate
drops below a certain threshold value, say 10 new branches covered
per 15 minutes. During the campaign, can we predict the coverage
rate at some point in the future? If so, how well can we predict the
future coverage rate as the prediction horizon or the current cam-
paign length increases? How can we tackle the statistical challenge
of adaptive bias, which is inherent in greybox fuzzing (i.e., samples
are not independent and identically distributed)?

In this paper, we i) evaluate existing statistical techniques to
predict the coverage rate𝑈 (𝑡0 + 𝑘) at any time 𝑡0 in the campaign
after a period of 𝑘 units of time in the future and ii) develop a new
extrapolation methodology that tackles the adaptive bias. We pro-
pose to efficiently simulate a large number of blackbox campaigns
from the collected coverage data, estimate the coverage rate for
each of these blackbox campaigns and conduct a simple regression
to extrapolate the coverage rate for the greybox campaign.

Our empirical evaluation using the Fuzztastic fuzzer benchmark
demonstrates that our extrapolation methodology exhibits at least
one order of magnitude lower error compared to the existing bench-
mark for 4 out of 5 experimental subjects we investigated. Notably,
compared to the existing extrapolation methodology, our extrapola-
tor excels in making long-term predictions, such as those extending
up to three times the length of the current campaign.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Security and privacy→ Software security engineering.

KEYWORDS
greybox fuzzing, extrapolation, coverage rate, adaptive bias, statis-
tical method
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1 INTRODUCTION
At the turn of the millennium, the late Mary-Jean Harrold drew a
research roadmap for the software testing community of the future
[13]. She highlighted the "development of techniques and tools for
use in estimating, predicting, and performing testing on evolving
software systems" as one of five research pointers. While there has
been some recent progress in the estimation of pertinent quantities
in the testing process, we have yet to start exploring methodologies
for prediction.

The rate at which new coverage is achieved is considered a fun-
damental measure of the efficiency of a fuzzing campaign. A fuzzer
is an automated software testing tool, and with increasing cover-
age, we mean the generation of inputs that cover new program
elements, such as a branch or a statement. If the coverage rate drops
below a certain threshold, the tester will abort the ongoing fuzzing
campaign for the lack of progress. Terminating a fuzzing campaign
early will help release computational resources and reduce the car-
bon footprint [17, 26]. If, throughout the campaign, the tester could
accurately predict the coverage rate at some point in the future,
they could conduct a cost-benefit analysis to assess the resources
required to achieve the targeted testing progress. Since fuzzing is a
preliminary testing technique that constitutes sophisticated testing
frameworks (e.g., a hybrid/ensemble fuzzing, an automated test
case generation framework, etc.), such a prediction would allow the
tester to adequately allocate resources (time and computing power)
for the entire testing process in advance [29].

One of the most successful fuzzing techniques is called greybox
fuzzing, which takes a mutation-based, coverage-guided approach.
A greybox fuzzer is mutation-based because it uses a corpus of pro-
gram inputs that are randomly mutated to slightly corrupt the seed
file while preserving much of the unknown but required input for-
mat. A greybox fuzzer is coverage-guided because it adds generated
inputs to the corpus that have been observed to increase coverage.
The hope is that an input generated from a coverage-increasing
input is itself more likely coverage-increasing. Since the probability
of covering a specific program element changes in this process, the
underlying distribution over these elements is not invariant. How-
ever, invariance is a key assumption in most statistical estimation
and extrapolation methodologies. Hence, a key statistical challenge
in the domain of greybox fuzzing is thus to tackle the resulting
adaptive bias.

In this paper, we introduce a novel extrapolation methodology
that allows us to predict the coverage rate𝑈 (𝑡0 +𝑚𝑡0) in a greybox
campaign of length 𝑡0 if the campaign length was extended𝑚 more
times while accounting for adaptive bias. We systematically select
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ABSTRACT

The missing mass refers to the proportion of data points in an unknown popula-
tion of classifier inputs that belong to classes not present in the classifier’s training
data, which is assumed to be a random sample from that unknown population. We
find that in expectation the missing mass is entirely determined by the number
fk of classes that do appear in the training data the same number of times and
an exponentially decaying error. While this is the first precise characterization
of the expected missing mass in terms of the sample, the induced estimator suf-
fers from an impractically high variance. However, our theory suggests a large
search space of nearly unbiased estimators that can be searched effectively and
efficiently. Hence, we cast distribution-free estimation as an optimization prob-
lem to find a distribution-specific estimator with a minimized mean-squared error
(MSE), given only the sample. In our experiments, our search algorithm discovers
estimators that have a substantially smaller MSE than the state-of-the-art Good-
Turing estimator. This holds for over 93% of runs when there are at least as many
samples as classes. Our estimators’ MSE is roughly 80% of the Good-Turing
estimator’s.

1 INTRODUCTION

How can we extrapolate from properties of the training data to properties of the unseen, underlying
distribution of the data? This is a fundamental question in machine learning (Orlitsky et al., 2003;
Orlitsky & Suresh, 2015; Painsky, 2022; Acharya et al., 2013; Hao & Li, 2020). The probability that
a data point belongs to a class that does not exist in the training data is also known as the missing
probability mass since empirically the entire probability mass is distributed over classes that do exist
in the training data. For instance, the missing mass measures how representative the training data
is of the unknown distribution. If the missing mass is high, the training is not very representative,
and a trained classifier is unlikely to predict the correct class. If we manually label training data, the
missing mass also measures saturation. We may decide that the labeling effort has been sufficient
and saturation has been reached when the missing mass is below a certain threshold.

1.1 BACKGROUND

Consider a multinomial distribution p = hp1, · · · pSi over a support set X where support size S = |X |

and probability values are unknown. Let Xn = hX1, · · ·Xni be a set of independent and identically
distributed random variables representing the sequence of elements observed in n samples from p.
Let Nx be the number of times element x 2 X is observed in the sample X

n. For k : 0  k  n,
let �k be the number of elements appearing exactly k times in X

n, i.e., Nx =
Pn

i=1 1(Xi = x) and
�k =

P
x2X 1(Nx = k). Let fk(n) be the expected value of �k (Good, 1953), i.e.,

fk(n) =

 
n

k

!
X

x2X
p
k
x(1� px)

n�k = E [�k] (1)

Estimating rare/unobserved px. We cannot expect all elements to exist in X
n. While the empirical

estimator p̂Emp
x = Nx/n is generally unbiased, p̂Emp

x distributes the entire probability mass only over
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STADS: So�ware Testing as Species Discovery
Spatial and Temporal Extrapolation from Tested Program Behaviors

MARCEL BÖHME∗, National University of Singapore and Monash University, Australia

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program
behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has
currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has
been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the
coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no
vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if
the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.

In this article, I establish an unexpected connection with the otherwise unrelated scienti�c �eld of ecology,
and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species
(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists
would �rst sample a large number of individuals from that forest, determine their species, and extrapolate
from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total
number of species, (ii) of the additional sampling e�ort required to discover 10% more species, or (iii) of the
probability to discover a new species are classical problems in ecology. The STADS framework draws from
over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge
for automated test generation. Our preliminary empirical study demonstrates a good estimator performance
even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS
framework provides statistical correctness guarantees with quanti�able accuracy.

CCS Concepts: • Security and privacy→ Penetration testing; • Software and its engineering→ Soft-
ware testing and debugging;

Additional Key Words and Phrases: Statistical guarantees, extrapolation, fuzzing, stopping rule, code coverage,
species coverage, discovery probability, security, reliability, measure of con�dence, measure of progress
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1 INTRODUCTION
The development of automated and practical approaches to vulnerability detection has never
been more important. The recent world-wide WannaCry cyber-epidemic clearly demonstrates the
vulnerability of our well-connected software systems. WannaCry exploits a software vulnerability
on Windows machines to gain root access on a huge number of computers all over the world. The
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Abstract—As researchers, we already understand how to make
testing more effective and efficient at finding bugs. However, as
fuzzing (i.e., automated testing) becomes more widely adopted
in practice, practitioners are asking: Which assurances does a
fuzzing campaign provide that exposes no bugs? When is it safe
to stop the fuzzer with a reasonable residual risk? How much
longer should the fuzzer be run to achieve sufficient coverage?

It is time for us to move beyond the innovation of increasingly
sophisticated testing techniques, to build a body of knowledge
around the explication and quantification of the testing process,
and to develop sound methodologies to estimate and extrapolate
these quantities with measurable accuracy. In our vision of the
future practitioners leverage a rich statistical toolset to assess
residual risk, to obtain statistical guarantees, and to analyze
the cost-benefit trade-off for ongoing fuzzing campaigns. We
propose a general framework as a first starting point to tackle this
fundamental challenge and discuss a large number of concrete
opportunities for future research.

I. INTRODUCTION

Cognitive psychology tells us that the unaided human mind is
vulnerable to many fallacies and illusions because of its reliance
on its memory for vivid anecdotes rather than systematic statistics.

— Prof. Steven Pinker (Dep. of Psychology at Harvard)

A. A Vivid Anecdote

Last year, we attended a meeting with several representatives
of a large company that provides security assessment services
for governments and industries worldwide. In preparation for
this meeting, we learned about their product portfolio and found
that their main product, a protocol-based blackbox fuzzer,1
can be used for security certification of medical devices (IEC
62443-4-2).2 While the fuzzer is part of a larger certification
process,3 it is primarily the fuzzer’s task to identify vulnera-
bilities that could be exploited remotely over the network.

Now, medical devices are safety-critical systems and un-
detected vulnerabilities can be life threatening. For instance,
Halperin et al. [2] describe several attacks on an implantable
cardioverter defibrillator to control when electrical shocks are
administered to the patient’s heart. Hence, subjecting medical
devices to rigorous cyber security assessment is a powerful
mitigator of cyber risks. This inspires trust in the certificate.

1We shall use the terms fuzzing and automated testing interchangeably.
2The assessment scheme for IEC 62443, the worldwide standard for security

of Industrial Control Systems, is operated by the ISA Security Compliance
Institute and offered within the Embedded Device Security Assurance (EDSA)
product which ascertains compliance with IEC 62443-4-2 [1].

3The ISASecure EDSA certification also requires that the organization
follows a robust, secure software development process and that the product
has properly implemented the security-related functional requirements.

A violation of this trust (e.g., if an attacker exploited an
undetected vulnerability in a medical device that is certified)
would be disastrous. Thus, the company’s reputation and
the certificate’s credibility depend, at least in part, on the
assurances which the fuzzer provides.

We walked into that meeting wondering about this question.
Which assurances are derived for the certificate from applying
the company’s fuzzer? To paraphrase Djikstra, fuzzing can be
used only to show the presence of vulnerabilities, not their
absence. How do they effectively assess the residual risk of a
fuzzing campaign that finds no vulnerabilities? How do they
arrive at the decision to stop the fuzzer and to proceed with
the certification? It turns out that the certification scheme does
not specify how much fuzzing is sufficient for certification.
Neither does it specify a concrete value for the allowable
residual risk that an undiscovered vulnerability still exists. In
practice, the decision is with the individual security researcher.
Even if a concrete threshold value was specified, there is no
statistical framework available that would allow the researcher
to quantify the residual risk for an ongoing campaign [3]–[5].

In the end, we were told, the decision is mostly based on
experience. Clearly, a long-running fuzzing campaign provides
much stronger assurances than a shorter one; meaning, the
residual risk decreases as the length of the campaign increases.
Hence, intuitively there is a particular point in time when it
is both economical and safe to abort a fuzzing campaign that
has found no vulnerabilities.

B. Call for Systematic Statistics
In this paper, we argue that we ought to do better than

relying on an individual’s experience. The security researcher
should be able to systematically assess and quantify the
inherent uncertainty. The certification authority should be
able to provide concrete guidance in the form of measurable
threshold values. This offers an opportunity for us as software
engineering researchers to develop a rich statistical toolset that
will enable software engineering practitioners to assess and
quantify the automated testing process.

Senior members of our community have previously called
for a general statistical framework. In 2000, Harrold [3]
established the “development of techniques and tools for use
in estimating, predicting, and performing testing” as a key
research objective for future software testing research. Seven
years later, Bertolino [4] corroborated that “we will need to
make the process of testing more effective, predictable and
effortless”. Yet today, Whalen [5] observes “there is no sound
basis to extrapolate from tested to untested cases”.4

4In the quotes, the emphasis in italic letters is mine.
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ABSTRACT
For any errorless fuzzing campaign, no matter how long, there is
always some residual risk that a software error would be discovered
if only the campaign was run for just a bit longer. Recently, greybox
fuzzing tools have foundwidespread adoption. Yet, practitioners can
only guess when the residual risk of a greybox fuzzing campaign
falls below a specific, maximum allowable threshold.

In this paper, we explain why residual risk cannot be directly
estimated for greybox campaigns, argue that the discovery proba-
bility (i.e., the probability that the next generated input increases
code coverage) provides an excellent upper bound, and explore
sound statistical methods to estimate the discovery probability in
an ongoing greybox campaign. We find that estimators for blackbox
fuzzing systematically and substantially under-estimate the true
risk. An engineer—who stops the campaign when the estimators
purport a risk below the maximum allowable risk—is vastly misled.
She might need execute a campaign that is orders of magnitude
longer to achieve the allowable risk. Hence, the key challenge we
address in this paper is adaptive bias: The probability to discover a
specific error actually increases over time. We provide the first prob-
abilistic analysis of adaptive bias, and introduce two novel classes
of estimators that tackle adaptive bias. With our estimators, the
engineer can decide with confidence when to abort the campaign.

CCS CONCEPTS
• Security and privacy→ Software and application security; •
Software and its engineering→ Software testing and debugging.
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software testing, statistics, estimation, assurance, correctness
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1 INTRODUCTION
On the one hand, we have software verification which allows to
demonstrate the correctness of the program for all inputs. On the
other hand, we have software testing which can demonstrate the
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Figure 1: In greybox fuzzing, the probability 𝑝bug to generate
a bug-revealing input (dashed line) increases as 𝑛 increases.
The probability Δ(𝑛) that the (𝑛 + 1)-th input is coverage-
increasing (solid line) provides an upper bound on the prob-
ability (residual risk) that it is the first bug-revealing input.
The vertical line is when we expect the first bug-rev. input.

correctness of the program only for some inputs. While verifica-
tion provides much stronger correctness guarantees, it is greybox
fuzzing, a specific form of software testing, which has found wide-
spread adoption in industry [24–26].

From a fuzzing campaign that has found no bugs, can we derive
some statement about the correctness of the program? Fuzzing
being a random process, it should be possible to derive statistical
claims about the probability that the next generated input is the
first bug-revealing input. We call this probability the residual risk.
We know how to quantify residual risk for whitebox fuzzing (using
model counting) [10] and blackbox fuzzing (using estimation) [1],
but not for greybox fuzzing—which has emerged as the state-of-
the-art in automated vulnerability discovery.

Greybox fuzzing is subject to adaptive bias, i.e., the probability
to generate a bug-revealing input actually increases throughout the
fuzzing campaign.1 Figure 1 shows simulation results for greybox
fuzzing. As more seeds become available, the bug probability 𝑝bug
increased (dashed line). In contrast, blackbox fuzzing is not subject
to adaptive bias and the probability to generate a bug-revealing
input remains constant throughout the campaign. If this was the
case for greybox fuzzing, we could cast residual risk estimation as
a sunrise problem2 and employ the well-known Laplace estimator.
However, in our experiments we find that, in the presence of adap-
tive bias, the Laplace estimator severely under-estimate the residual
risk for greybox campaigns. The true risk is orders of magnitude
higher than the estimator purports. A practitioner would abort the
campaign many days earlier than necessary, and assume a higher
degree of confidence in the correctness than warranted.

1We mean the probability 𝑝bug to generate any bug-revealing input, not just the first.
2The sunrise problem is the following riddle: "Suppose, we have seen the sun rise ever
since we were born 𝑁 days, ago. What is the probability that the sun rises tomorrow?"
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ABSTRACT
Given a target program state (or statement) 𝑠 , what is the proba-
bility that an input reaches 𝑠? This is the quantitative reachability
analysis problem. For instance, quantitative reachability analysis
can be used to approximate the reliability of a program (where 𝑠
is a bad state). Traditionally, quantitative reachability analysis is
solved as a model counting problem for a formal constraint that
represents the (approximate) reachability of 𝑠 along paths in the
program, i.e., probabilistic reachability analysis. However, in pre-
liminary experiments, we failed to run state-of-the-art probabilistic
reachability analysis on reasonably large programs.

In this paper, we explore statistical methods to estimate reach-
ability probability. An advantage of statistical reasoning is that
the size and composition of the program are insubstantial as long
as the program can be executed. We are particularly interested in
the error compared to the state-of-the-art probabilistic reachabil-
ity analysis. We realize that existing estimators do not exploit the
inherent structure of the program and develop structure-aware
estimators to further reduce the estimation error given the same
number of samples. Our empirical evaluation on previous and new
benchmark programs shows that (i) our statistical reachability anal-
ysis outperforms state-of-the-art probabilistic reachability analysis
tools in terms of accuracy, efficiency, and scalability, and (ii) our
structure-aware estimators further outperform (blackbox) estima-
tors that do not exploit the inherent program structure. We also
identify multiple program properties that limit the applicability of
the existing probabilistic analysis techniques.
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Quantitative reachability analysis, Statistical reachability analysis,
Reaching probability, Markov chain
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1 INTRODUCTION
The traditional assessment of the reachability of a program state
provides only a true-false answer: either the state is reachable
(e.g., the program may crash for some input) or not (e.g., it never
crashes for any input). Due to the undecidability of the analysis
problem [16] and the restricted expressiveness of the analysis result,
such a binary answer provides only limited information. Instead
of a binary answer, quantitative reachability analysis provides the
probability of how likely a certain program state is reached given
the workload of the program. Such a quantitative measure of reach-
ability can provide more comprehensive information about the
program semantics. For instance, it can estimate how probable is
to reach a crashing state under normal workload, which can be
critical information for software reliability/security/maintenance.

The typical method considered for quantitative reachability anal-
ysis is called probabilistic reachability analysis [26], which analyt-
ically computes the reaching probability directly from the source
code. Probabilistic Symbolic Execution (PSE), the pioneering work
by Geldenhuys et al. [12], computes the reaching probability of a
program state by finding all the path conditions to reach the state
using symbolic execution and counting the number of inputs satisfy-
ing the path conditions using model counting; the sum of the proba-
bilities becomes the exact reaching probability of the program state.
As PSE may suffer from scalability issues for a large and complex
program, many follow-up works have been proposed to improve
the scalability of probabilistic reachability analysis [11, 13]. Most
recently, Saha et al. proposed PReach which computes the reaching
probability using branch-level probability information [26].

When facing a problem too complex for the analytical method,
especially when it is unmanageable to compute a quantity exactly,
a sampling-based statistical method can be used to overcome the
limitation [4]. It is well-known that Monte Carlo methods have
been successfully applied to numerous problems across various
fields, including natural sciences [10] and engineering [22], where
the solution is intractable for analytic computation. Recently, in
the context of program analysis, Liyanage et al. [20] proposed a
statistical method to approximate the number of elements that can
be reached by actual program execution, which, previously, can
only be upper-bounded by static analysis.

This work explores how the statistical method can be applied to
quantitative reachability analysis. We propose a statistical reach-
ability analysis, which tackles the quantitative reachability analy-
sis problem with random sampling and statistical modeling. The
main issue of statistical reachability analysis is how to estimate
the reaching probability of a certain program state that has not
yet been observed in the sampling process. To overcome this issue,
we first suggest a naive approach of using two well-known esti-
mators, Laplace smoothing and Good-Turing estimator [15], that
can estimate the non-zero probability of unseen events from the
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ABSTRACT
A fuzzer can literally run forever. However, as more resources are
spent, the coverage rate continuously drops, and the utility of the
fuzzer declines. To tackle this coverage-resource tradeoff, we could
introduce a policy to stop a campaign whenever the coverage rate
drops below a certain threshold value, say 10 new branches covered
per 15 minutes. During the campaign, can we predict the coverage
rate at some point in the future? If so, how well can we predict the
future coverage rate as the prediction horizon or the current cam-
paign length increases? How can we tackle the statistical challenge
of adaptive bias, which is inherent in greybox fuzzing (i.e., samples
are not independent and identically distributed)?

In this paper, we i) evaluate existing statistical techniques to
predict the coverage rate𝑈 (𝑡0 + 𝑘) at any time 𝑡0 in the campaign
after a period of 𝑘 units of time in the future and ii) develop a new
extrapolation methodology that tackles the adaptive bias. We pro-
pose to efficiently simulate a large number of blackbox campaigns
from the collected coverage data, estimate the coverage rate for
each of these blackbox campaigns and conduct a simple regression
to extrapolate the coverage rate for the greybox campaign.

Our empirical evaluation using the Fuzztastic fuzzer benchmark
demonstrates that our extrapolation methodology exhibits at least
one order of magnitude lower error compared to the existing bench-
mark for 4 out of 5 experimental subjects we investigated. Notably,
compared to the existing extrapolation methodology, our extrapola-
tor excels in making long-term predictions, such as those extending
up to three times the length of the current campaign.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Security and privacy→ Software security engineering.

KEYWORDS
greybox fuzzing, extrapolation, coverage rate, adaptive bias, statis-
tical method
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1 INTRODUCTION
At the turn of the millennium, the late Mary-Jean Harrold drew a
research roadmap for the software testing community of the future
[13]. She highlighted the "development of techniques and tools for
use in estimating, predicting, and performing testing on evolving
software systems" as one of five research pointers. While there has
been some recent progress in the estimation of pertinent quantities
in the testing process, we have yet to start exploring methodologies
for prediction.

The rate at which new coverage is achieved is considered a fun-
damental measure of the efficiency of a fuzzing campaign. A fuzzer
is an automated software testing tool, and with increasing cover-
age, we mean the generation of inputs that cover new program
elements, such as a branch or a statement. If the coverage rate drops
below a certain threshold, the tester will abort the ongoing fuzzing
campaign for the lack of progress. Terminating a fuzzing campaign
early will help release computational resources and reduce the car-
bon footprint [17, 26]. If, throughout the campaign, the tester could
accurately predict the coverage rate at some point in the future,
they could conduct a cost-benefit analysis to assess the resources
required to achieve the targeted testing progress. Since fuzzing is a
preliminary testing technique that constitutes sophisticated testing
frameworks (e.g., a hybrid/ensemble fuzzing, an automated test
case generation framework, etc.), such a prediction would allow the
tester to adequately allocate resources (time and computing power)
for the entire testing process in advance [29].

One of the most successful fuzzing techniques is called greybox
fuzzing, which takes a mutation-based, coverage-guided approach.
A greybox fuzzer is mutation-based because it uses a corpus of pro-
gram inputs that are randomly mutated to slightly corrupt the seed
file while preserving much of the unknown but required input for-
mat. A greybox fuzzer is coverage-guided because it adds generated
inputs to the corpus that have been observed to increase coverage.
The hope is that an input generated from a coverage-increasing
input is itself more likely coverage-increasing. Since the probability
of covering a specific program element changes in this process, the
underlying distribution over these elements is not invariant. How-
ever, invariance is a key assumption in most statistical estimation
and extrapolation methodologies. Hence, a key statistical challenge
in the domain of greybox fuzzing is thus to tackle the resulting
adaptive bias.

In this paper, we introduce a novel extrapolation methodology
that allows us to predict the coverage rate𝑈 (𝑡0 +𝑚𝑡0) in a greybox
campaign of length 𝑡0 if the campaign length was extended𝑚 more
times while accounting for adaptive bias. We systematically select
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ABSTRACT

The missing mass refers to the proportion of data points in an unknown popula-
tion of classifier inputs that belong to classes not present in the classifier’s training
data, which is assumed to be a random sample from that unknown population. We
find that in expectation the missing mass is entirely determined by the number
fk of classes that do appear in the training data the same number of times and
an exponentially decaying error. While this is the first precise characterization
of the expected missing mass in terms of the sample, the induced estimator suf-
fers from an impractically high variance. However, our theory suggests a large
search space of nearly unbiased estimators that can be searched effectively and
efficiently. Hence, we cast distribution-free estimation as an optimization prob-
lem to find a distribution-specific estimator with a minimized mean-squared error
(MSE), given only the sample. In our experiments, our search algorithm discovers
estimators that have a substantially smaller MSE than the state-of-the-art Good-
Turing estimator. This holds for over 93% of runs when there are at least as many
samples as classes. Our estimators’ MSE is roughly 80% of the Good-Turing
estimator’s.

1 INTRODUCTION

How can we extrapolate from properties of the training data to properties of the unseen, underlying
distribution of the data? This is a fundamental question in machine learning (Orlitsky et al., 2003;
Orlitsky & Suresh, 2015; Painsky, 2022; Acharya et al., 2013; Hao & Li, 2020). The probability that
a data point belongs to a class that does not exist in the training data is also known as the missing
probability mass since empirically the entire probability mass is distributed over classes that do exist
in the training data. For instance, the missing mass measures how representative the training data
is of the unknown distribution. If the missing mass is high, the training is not very representative,
and a trained classifier is unlikely to predict the correct class. If we manually label training data, the
missing mass also measures saturation. We may decide that the labeling effort has been sufficient
and saturation has been reached when the missing mass is below a certain threshold.

1.1 BACKGROUND

Consider a multinomial distribution p = hp1, · · · pSi over a support set X where support size S = |X |

and probability values are unknown. Let Xn = hX1, · · ·Xni be a set of independent and identically
distributed random variables representing the sequence of elements observed in n samples from p.
Let Nx be the number of times element x 2 X is observed in the sample X

n. For k : 0  k  n,
let �k be the number of elements appearing exactly k times in X

n, i.e., Nx =
Pn

i=1 1(Xi = x) and
�k =

P
x2X 1(Nx = k). Let fk(n) be the expected value of �k (Good, 1953), i.e.,

fk(n) =

 
n

k

!
X

x2X
p
k
x(1� px)

n�k = E [�k] (1)

Estimating rare/unobserved px. We cannot expect all elements to exist in X
n. While the empirical

estimator p̂Emp
x = Nx/n is generally unbiased, p̂Emp

x distributes the entire probability mass only over

1
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Correlation: Very strong
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Moderate agreement means  
we cannot reliably substitute  
one instrument for the other.

Ranking 10 fuzzers  
in terms of code coverage and 
in terms of #bugs found. 

The worst fuzzer in terms coverage is  
the best fuzzer in terms of bug finding.

Agreement: Coverage vs Bug Finding



• 10 fuzzers x 24 random open source projects x 23h x 20 trials

• We observe a moderate agreement on superiority or ranking.


• Only if we require differences in coverage *and* bug finding to  
be highly statistically significant, we observe a strong agreement.

You can substitute 
coverage for bug finding 

only with moderate reliability.

Agreement: Coverage vs Bug Finding
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Goals

● Promote innovative fuzzers in software vulnerability discovery

● Encourage developers and researchers to present and discuss their work

● Contribute a free and easy-to-use infrastructure for the community

53 Benchmarks

Coverage-based Bug-based

Public 24 5

Hidden 14 10
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(SBFT)'23
Fuzzing Competition
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Dongge Liu
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• Problem: Less economical (we did not find bugs in 7/24 [30%] programs).
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• Choose a random, representative sample of programs and fuzz them.

• (Un)fortunately, bugs are very sparse. No statistical power.

• Maximize bug probability to for economical reasons.


• Identify and deduplicate bugs *after* the fuzzing campaign. Minimizes bias.

• Problem: Less economical (we did not find bugs in 7/24 [30%] programs).


• Mutation-based evaluation

• Inject synthetic bugs into a random, representative sample of programs

• More economical. We know many bugs can be found.

• Problem: Are synthetic bugs representative of real bugs?

Don’t measure coverage. Measure bugs?
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undiscovered bugs appear worse.

• Fuzzers that contributed to the original 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• Ground-truth-based evaluation 

• Curate real bugs in a random, representative sample of programs.

• Economical, realistic bugs, objective ground truth.

• Problem:


1. Survivorship bias

2. Confirmation bias

• Given a ground truth benchmark,  

researchers might be enticed  
to iteratively and unknowingly  
tune their fuzzer to the benchmark.

Don’t measure coverage. Measure bugs?
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• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.



Measures are specific, our claims general.

• What did we learn?

• Sometimes, there is no optimal measure of success.


• Even if there is a strong correlation, you cannot substitute one measure for 
another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.



Measures are specific, our claims general.

• What did we learn?

• Sometimes, there is no optimal measure of success.


• Even if there is a strong correlation, you cannot substitute one measure for 
another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.



Measures are specific, our claims general.

• What did we learn?

• Sometimes, there is no optimal measure of success.


• Even if there is a strong correlation, you cannot substitute one measure for 
another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.



• What did we learn?

• Sometimes, there is no optimal measure of success.


• Even if there is a strong correlation, you cannot substitute one measure for 
another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.

Measures are specific, our claims general.



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• What did we learn?

• Sometimes, there is no optimal measure of success.


• Even if there is a strong correlation, you cannot substitute one measure for 
another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.

Measures are specific, our claims general.



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• What did we learn?

• Sometimes, there is no optimal measure of success.
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another and expect the same benchmarking outcome.


• Recommendation:
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On the Reliability of Coverage-Based Fuzzer Benchmarking
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ABSTRACT
Given a program where none of our fuzzers �nds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer e�ectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
�nd that a fuzzer that covers more code also �nds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at �nding bugs.

Curiously enough, however, we �nd no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at �nding bugs.
ACM Reference Format:
Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Relia-
bility of Coverage-Based Fuzzer Benchmarking. In 44th International Confer-
ence on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.
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1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug �nding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them �nds any bugs. If indeed they don’t, we
might have some con�dence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would �nd no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of �nding bugs? A widely used proxy measure
of fuzzer e�ectiveness is the code coverage that is achieved. After
all, a fuzzer cannot �nd bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers ⇥ 24 C programs ⇥ 20 fuzzing
campaigns of 23 hours (⇡ 13 CPU years). We use three measures of
coverage and two measures of bug �nding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
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© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
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(a) 1 hour fuzzing campaigns (d = 0.38).
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(b) 1 day fuzzing campaigns (d = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug �nding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly di�erent. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the di�erence in coverage and the di�erence in bug �nding are
statistically signi�cant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug �nding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the di�erences in terms of
coverage and bug �nding are statistically signi�cant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the di�erences in terms of coverage and bug �nding
is statistically signi�cant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
di�erences to be statistically signi�cant at ?  0.0001 for coverage
and bug �nding, do we �nd a strong agreement. However, statistical
signi�cance at ?  0.0001 only in terms of coverage is not su�cient;
we again �nd only weak agreement. The increase in agreement
with statistical signi�cance is not observed when we measure bug
�nding using the time-to-error. We also �nd that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties

DYLAN WOLFF, National University of Singapore, Singapore

MARCEL BÖHME,Max Planck Institute for Security and Privacy, Germany

ABHIK ROYCHOUDHURY, National University of Singapore, Singapore

In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the speci�c characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen di�erently, the same fuzzers may be ranked di�erently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the speci�c properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our �rst methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
di�erent e�ects this property has on various fuzzers. However, due to the large number of properties and the di�culty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer e�ectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative e�ectiveness of fuzzers and quantify the
e�ects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically signi�cant e�ect on the relative e�ectiveness of fuzzers.

ACM Reference Format:
Dylan Wol�, Marcel Böhme, and Abhik Roychoudhury. 2025. Fuzzing: On Benchmarking Outcome as a Function of Benchmark
Properties. 1, 1 (April 2025), 25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for �nding security �aws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug �nding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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• On the average, most fuzzers perform similarly.

Source: 2020 Sample Fuzzbench Report (https://www.fuzzbench.com/reports/sample/index.html)

Avg. rank: 6±1.5
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• Observation:

• On the average, most fuzzers perform similarly.

• For each specific program, there are clear winners.


• Atomistic benchmarking doesn’t show that, e.g., 
the ranking of AFL++ improves on larger programs.
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• We realize that the specific benchmark outcome 
is a function of the specific benchmark properties.


• We propose a counterfactual analysis 

• to report the conditions under which the benchmark outcome would change.

• to quantify the impact of a change in a benchmark property on the outcome.

Original outcome 
(Started on AFL-generated seeds)


1. Entropic

2. LibFuzzer

3. AFL++

4. AFL

Alternative outcome 
(Started on LibFuzzer-generated seeds)


1. AFL++

2. Entropic

3. AFL

4. LibFuzzer

• Experiment: 

•  Manipulate one property.

•  Report difference in ranking.
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• to report the conditions under which the benchmark outcome would change.

• to quantify the impact of a change in a benchmark property on the outcome.

• Randomization: 

•  Manipulate many properties.

•  Report multiple linear regression.
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• What did we learn?

• Your benchmarking outcome is specific to your benchmark configuration.


• Techniques might seem to perform similar on the average instance.  
Atomistic benchmarking hides the strengths of individual techniques.


• Recommendation:

• Conduct a counterfactual analysis to report the conditions under which a 

benchmark outcome changes.
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Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties

DYLAN WOLFF, National University of Singapore, Singapore

MARCEL BÖHME,Max Planck Institute for Security and Privacy, Germany
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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the speci�c characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen di�erently, the same fuzzers may be ranked di�erently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the speci�c properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our �rst methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
di�erent e�ects this property has on various fuzzers. However, due to the large number of properties and the di�culty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer e�ectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative e�ectiveness of fuzzers and quantify the
e�ects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically signi�cant e�ect on the relative e�ectiveness of fuzzers.
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1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for �nding security �aws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug �nding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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Intermission. Any quick questions?

Charles Goodhart on benchmarking outcome as a measure of progress.

Goodhart’s Law

Section I 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Top Score on the Wrong Exam: On Benchmarking in Machine
Learning for Vulnerability Detection
NIKLAS RISSE,MPI-SP, Germany
JING LIU,MPI-SP, Germany
MARCEL BÖHME,MPI-SP, Germany

According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past �ve years de�ne ML4VD as a function-level binary classi�cation problem:

Given a function, does it contain a security �aw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often �rst want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security �aw and con�rmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We �nd that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We �nd that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-de�ned and call into question the
internal validity of this growing body of work. Constructively, we call for more e�ective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: • Security and privacy! Software and application security; • Software and its engi-
neering! Software testing and debugging; • Computing methodologies!Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction
In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD de�ned and thus evaluated?
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Uncovering the Limits of Machine Learning
for Automatic Vulnerability Detection

Niklas Risse
MPI-SP, Germany
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose

Detecting Overfitting of Machine Learning Techniques for
Automatic Vulnerability Detection

Niklas Risse
niklas.risse@mpi-sp.org

Max-Planck-Institute for Security and Privacy
Bochum, Germany

ABSTRACT
Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function 𝑓 , models trained bymachine learning techniques
can decide if 𝑓 contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Software
and its engineering→ Software testing and debugging.

KEYWORDS
machine learning, automatic vulnerability detection, semantic pre-
serving transformations, large language models
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1 INTRODUCTION
Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16–20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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• Experimental Setup:

• Dataset: CodeXGLUE/Devign (45.6% vulnerable functions).

• 6 SOTA ML4VD approaches (mostly LLMs, one graph-based).

Benchmarking confirms effectiveness.  
What about its limits?
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• ML4VD

Benchmarking confirms effectiveness.  
What about its limits?

USENIX SEC’24

Niklas: If ML4VD techniques can predict 
vulnerability, they should withstand  
semantic preserving changes, right?
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What about its limits?

USENIX SEC’24

Test failed: Not the semantic cause of the 
vulnerability, but something else makes it 
predict the vulnerability label correctly.❌
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Benchmarking confirms effectiveness.  
What about its limits?

USENIX SEC’24

Niklas: If ML4VD techniques are  
robust against all perturbations,  

they should withstand  
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• ML4VD — Robustified + testing is amplified *hold-one-out*

Benchmarking confirms effectiveness.  
What about its limits?

USENIX SEC’24

Test failed: The model now only overfits to 
the specific way in which we robustify the 

model. There is still an alternative 
explanation of the impressive results.

❌
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• Given such impressive results, the experimenter might assume they 
are explained by ML4VD’s true capability to detect vulnerabilities.


• We study the veracity of this assumption: 

• Even simple semantic-preserving changes reduces observed effectiveness.

• Making the model more robust doesn’t change this insight.

• ML4VD cannot even distinguish buggy from patched version.


• Alternative explanation of impressive results:

• Spurious correlations with unrelated features.

Benchmarking confirms effectiveness.  
What about its limits?

USENIX SEC’24



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• Given such impressive results, the experimenter might assume they 
are explained by ML4VD’s true capability to detect vulnerabilities.


• We study the veracity of this assumption: 

• Even simple semantic-preserving changes reduces observed effectiveness.

• Making the model more robust doesn’t change this insight.

• ML4VD cannot even distinguish buggy from patched version.


• Alternative explanation of impressive results:

• Spurious correlations with unrelated features.

Benchmarking confirms effectiveness.  
What about its limits?

USENIX SEC’24



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• Given such impressive results, the experimenter might assume they 
are explained by ML4VD’s true capability to detect vulnerabilities.


• We study the veracity of this assumption: 

• Even simple semantic-preserving changes reduces observed effectiveness.

• Making the model more robust doesn’t change this insight.

• ML4VD cannot even distinguish buggy from patched version.


• Alternative explanation of impressive results:

• Spurious correlations with unrelated features.

Benchmarking confirms effectiveness.  
What about its limits?

USENIX SEC’24



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

Top Score on the Wrong Exam

ISSTA’25

Does this question make sense?

“Given this function, does it contain a security flaw?”

What is the definition of security flaw? What does it even mean to contain a security flaw?

Let’s say, the code in the function causes the program to be vulnerable to attack. Changing that function fixes the vulnerability.

Can we say whether the function causes the program to be vulnable without further context?

This is the question we study.



Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• ML4VD is mostly cast as binary classification problem.

•  

Top Score on the Wrong Exam

ISSTA’25

“Given this function, does it contain a security flaw?”
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the three most popular benchmarks (BigVul, Devign, DiverseVul)
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Context-dependency of functions labeled as vulnerable.

How often do we have to abstain when deciding without further context whether a given 
function (that is labeled as vulnerable) really causes the program to be vulnerable?
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Top Score on the Wrong Exam

ISSTA’25

Context-dependency of functions labeled as vulnerable.

How often do we have to abstain when deciding without further context whether a given 
function (that is labeled as vulnerable) really causes the program to be vulnerable?

100%of the randomly sampled 
vulnerable functions.
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What about functions that were labeled as secure?

How often would they make a program vulnerable IF a corresponding context existed?
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What about functions that were labeled as secure?

How often would they make a program vulnerable IF a corresponding context existed?

92% of the randomly sampled 
secure functions.
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Why?

• ML4VD as function-level, binary classification problem is ill-defined!

• Yet, ML4VD techniques perform impressively on these benchmarks.
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Why?

• ML4VD as function-level, binary classification problem is ill-defined!

• Yet, ML4VD techniques perform impressively on these benchmarks.

Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

• ML4VD — Robustified + testing is amplified *hold-one-out*

Benchmarking confirms effectiveness.  
What about its limits?
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• ML4VD as function-level, binary classification problem is ill-defined!

• Yet, ML4VD techniques perform impressively on these benchmarks.

• Why? Spurious correlations with features unrelated to vulnerability.

• Even removing all information about vulnerability from functions, 

i.e., just using token counts, we get:
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• Why? Spurious correlations with features unrelated to vulnerability.

• Even removing all information about vulnerability from functions, 

i.e., just using token counts, we get:

Top Score on the Wrong Exam
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62% f1-score on Devign.

86% f1-score on BigVul.
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• What about alternative problem statements?

• Classification with abstention.

• Either classify into vulnerable / not vulnerable OR abstain entirely.

• Impractical: Classifier would abstain in most cases.

Top Score on the Wrong Exam



Top Score on the Wrong Exam

• What about alternative problem statements?
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• Classification using other base units.
• Line/statement/commit-level: No reason to believe  

context-dependency problem is solved.

• File/program-level: Impractical?
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• Classification with abstention.
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• Context-conditional classification.

• Given the context of the program/repository, is this function vulnerable?

• Problem: 


• Doesn’t solve our benchmarking problem (spurious correlations).

• A bad classifier that *disregards* the context evidently still performs very well.
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• What about alternative problem statements?

• Classification with abstention.

• Classification using other base units.

• Context-conditional classification.

• ML4VD as testing problem!
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• What did we learn?

• We use benchmarking to learn how well a technique solves the problem, 

but an entire field can beat benchmarks without solving the problem.


• For ML techniques, we must tackle the problem of spurious correlations 
before we can consider benchmark outcomes as trustworthy.


• Recommendation:

• When benchmarking your technique, don’t blindly trust the numbers.  

Step back and reflect if you are asking the right questions to begin with.
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According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past �ve years de�ne ML4VD as a function-level binary classi�cation problem:

Given a function, does it contain a security �aw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often �rst want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security �aw and con�rmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We �nd that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We �nd that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-de�ned and call into question the
internal validity of this growing body of work. Constructively, we call for more e�ective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: • Security and privacy! Software and application security; • Software and its engi-
neering! Software testing and debugging; • Computing methodologies!Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction
In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD de�ned and thus evaluated?
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Uncovering the Limits of Machine Learning
for Automatic Vulnerability Detection

Niklas Risse
MPI-SP, Germany
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose

Detecting Overfitting of Machine Learning Techniques for
Automatic Vulnerability Detection
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Bochum, Germany

ABSTRACT
Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function 𝑓 , models trained bymachine learning techniques
can decide if 𝑓 contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Software
and its engineering→ Software testing and debugging.

KEYWORDS
machine learning, automatic vulnerability detection, semantic pre-
serving transformations, large language models
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1 INTRODUCTION
Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16–20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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There are limits to benchmarking.

Section III 
 

Philosophical Perspective
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• We can never confirm a scientific theory 
just by collecting more evidence in favor.

Hume’s Problem of Induction

David Hume *  1711 in Edinburgh 
† 1776 in EdinburghEnquiry Concerning Human Understanding (1748)
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Popper’s Critical Rationalism

Karl Popper *  1902 in Vienna 
† 1994 in London

• We can never confirm a scientific theory 
just by collecting more evidence in favor.


• Popper’s criticial rationalism

• Proposal for sound scientific progress in the absence 

of the possibility to confirm a scientific theory.

• Instead of trying to confirm a theory, we should  

seriously attempt and fail to find counterexamples  
otherwise too many false theories remain in tact.
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• Benchmarking is us trying to confirm the progress of our techniques.

• Benchmarking is important! Some empirical evidence is better than none!


• However, progress on a benchmark ≠ progress on the problem.

• Going from 92% to 95% is no indicator of progress but of saturation.

• Without an additional approach of critical rationalism, applied to both, 

our techniques as well as our benchmarking methodologies, 
too many ineffective techniques will appear to be effective.

Benchmarking does not exempt us from  
Critical Rationalism.
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Benchmarking does not exempt us from  
Critical Rationalism. IEEE S&P’25

• Example: There is no guarantee of security.

• Concretely, we can never hope to confirm the  

effectiveness of our defenses. 

• But we can seriously attempt and fail to find 

exploits in our software despite our defenses.
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Measures are specific, our claims general.
• What did we learn?


1. There is no optimal measure.


2. You cannot substitute one measure for another  
and expect the same benchmarking outcome.


3. It’s best to report both measures.

On the Reliability of Coverage-Based Fuzzer Benchmarking
Marcel Böhme
MPI-SP, Germany

Monash University, Australia

László Szekeres
Google, USA

Jonathan Metzman
Google, USA

ABSTRACT
Given a program where none of our fuzzers �nds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer e�ectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
�nd that a fuzzer that covers more code also �nds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at �nding bugs.

Curiously enough, however, we �nd no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at �nding bugs.
ACM Reference Format:
Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Relia-
bility of Coverage-Based Fuzzer Benchmarking. In 44th International Confer-
ence on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510230

1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug �nding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them �nds any bugs. If indeed they don’t, we
might have some con�dence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would �nd no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of �nding bugs? A widely used proxy measure
of fuzzer e�ectiveness is the code coverage that is achieved. After
all, a fuzzer cannot �nd bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers ⇥ 24 C programs ⇥ 20 fuzzing
campaigns of 23 hours (⇡ 13 CPU years). We use three measures of
coverage and two measures of bug �nding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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(a) 1 hour fuzzing campaigns (d = 0.38).

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Fuzzer Ranks by avg. #branches covered

Fu
zz

er
 R

an
ks

 b
y 

av
g.

 #
bu

gs
 d

is
co

ve
re

d

0 2 4 6 8 10
#benchmarks

(b) 1 day fuzzing campaigns (d = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug �nding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly di�erent. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the di�erence in coverage and the di�erence in bug �nding are
statistically signi�cant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug �nding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the di�erences in terms of
coverage and bug �nding are statistically signi�cant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the di�erences in terms of coverage and bug �nding
is statistically signi�cant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
di�erences to be statistically signi�cant at ?  0.0001 for coverage
and bug �nding, do we �nd a strong agreement. However, statistical
signi�cance at ?  0.0001 only in terms of coverage is not su�cient;
we again �nd only weak agreement. The increase in agreement
with statistical signi�cance is not observed when we measure bug
�nding using the time-to-error. We also �nd that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties
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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the speci�c characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen di�erently, the same fuzzers may be ranked di�erently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the speci�c properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our �rst methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
di�erent e�ects this property has on various fuzzers. However, due to the large number of properties and the di�culty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer e�ectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative e�ectiveness of fuzzers and quantify the
e�ects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically signi�cant e�ect on the relative e�ectiveness of fuzzers.
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1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for �nding security �aws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug �nding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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Benchmarking confirms effectiveness.  
What about its limits?
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According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past �ve years de�ne ML4VD as a function-level binary classi�cation problem:

Given a function, does it contain a security �aw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often �rst want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security �aw and con�rmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We �nd that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We �nd that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-de�ned and call into question the
internal validity of this growing body of work. Constructively, we call for more e�ective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: • Security and privacy! Software and application security; • Software and its engi-
neering! Software testing and debugging; • Computing methodologies!Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction
In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD de�ned and thus evaluated?
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose
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ABSTRACT
Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function 𝑓 , models trained bymachine learning techniques
can decide if 𝑓 contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Software
and its engineering→ Software testing and debugging.
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machine learning, automatic vulnerability detection, semantic pre-
serving transformations, large language models
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1 INTRODUCTION
Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16–20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used
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Measures are specific, our claims general.
• What did we learn?


1. There is no optimal measure.


2. You cannot substitute one measure for another  
and expect the same benchmarking outcome.


3. It’s best to report both measures.
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ABSTRACT
Given a program where none of our fuzzers �nds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer e�ectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
�nd that a fuzzer that covers more code also �nds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at �nding bugs.

Curiously enough, however, we �nd no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at �nding bugs.
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1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug �nding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them �nds any bugs. If indeed they don’t, we
might have some con�dence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would �nd no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of �nding bugs? A widely used proxy measure
of fuzzer e�ectiveness is the code coverage that is achieved. After
all, a fuzzer cannot �nd bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers ⇥ 24 C programs ⇥ 20 fuzzing
campaigns of 23 hours (⇡ 13 CPU years). We use three measures of
coverage and two measures of bug �nding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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(a) 1 hour fuzzing campaigns (d = 0.38).
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(b) 1 day fuzzing campaigns (d = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug �nding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly di�erent. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the di�erence in coverage and the di�erence in bug �nding are
statistically signi�cant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug �nding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the di�erences in terms of
coverage and bug �nding are statistically signi�cant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the di�erences in terms of coverage and bug �nding
is statistically signi�cant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
di�erences to be statistically signi�cant at ?  0.0001 for coverage
and bug �nding, do we �nd a strong agreement. However, statistical
signi�cance at ?  0.0001 only in terms of coverage is not su�cient;
we again �nd only weak agreement. The increase in agreement
with statistical signi�cance is not observed when we measure bug
�nding using the time-to-error. We also �nd that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties
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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the speci�c characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen di�erently, the same fuzzers may be ranked di�erently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the speci�c properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our �rst methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
di�erent e�ects this property has on various fuzzers. However, due to the large number of properties and the di�culty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer e�ectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative e�ectiveness of fuzzers and quantify the
e�ects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically signi�cant e�ect on the relative e�ectiveness of fuzzers.
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1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for �nding security �aws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug �nding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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Benchmarking confirms effectiveness.  
What about its limits?

Top Score on the Wrong Exam: On Benchmarking in Machine
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According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past �ve years de�ne ML4VD as a function-level binary classi�cation problem:

Given a function, does it contain a security �aw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often �rst want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security �aw and con�rmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We �nd that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We �nd that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-de�ned and call into question the
internal validity of this growing body of work. Constructively, we call for more e�ective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: • Security and privacy! Software and application security; • Software and its engi-
neering! Software testing and debugging; • Computing methodologies!Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction
In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD de�ned and thus evaluated?
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose
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ABSTRACT
Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function 𝑓 , models trained bymachine learning techniques
can decide if 𝑓 contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Software
and its engineering→ Software testing and debugging.
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1 INTRODUCTION
Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16–20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used
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• What did we learn?

• Sometimes, there is no optimal measure of success.

• Even if there is a strong correlation, you cannot substitute one measure for 

another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.

Measures are specific, our claims general.

Unless there is high agreement  
between two measures, report  
multiple measures of success  
so as to triangulate.
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Measures are specific, our claims general.
• What did we learn?


1. There is no optimal measure.


2. You cannot substitute one measure for another  
and expect the same benchmarking outcome.


3. It’s best to report both measures.

On the Reliability of Coverage-Based Fuzzer Benchmarking
Marcel Böhme
MPI-SP, Germany

Monash University, Australia

László Szekeres
Google, USA

Jonathan Metzman
Google, USA

ABSTRACT
Given a program where none of our fuzzers �nds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer e�ectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
�nd that a fuzzer that covers more code also �nds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at �nding bugs.

Curiously enough, however, we �nd no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at �nding bugs.
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1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug �nding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them �nds any bugs. If indeed they don’t, we
might have some con�dence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would �nd no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of �nding bugs? A widely used proxy measure
of fuzzer e�ectiveness is the code coverage that is achieved. After
all, a fuzzer cannot �nd bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers ⇥ 24 C programs ⇥ 20 fuzzing
campaigns of 23 hours (⇡ 13 CPU years). We use three measures of
coverage and two measures of bug �nding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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(a) 1 hour fuzzing campaigns (d = 0.38).
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(b) 1 day fuzzing campaigns (d = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug �nding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly di�erent. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the di�erence in coverage and the di�erence in bug �nding are
statistically signi�cant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug �nding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the di�erences in terms of
coverage and bug �nding are statistically signi�cant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the di�erences in terms of coverage and bug �nding
is statistically signi�cant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
di�erences to be statistically signi�cant at ?  0.0001 for coverage
and bug �nding, do we �nd a strong agreement. However, statistical
signi�cance at ?  0.0001 only in terms of coverage is not su�cient;
we again �nd only weak agreement. The increase in agreement
with statistical signi�cance is not observed when we measure bug
�nding using the time-to-error. We also �nd that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties

DYLAN WOLFF, National University of Singapore, Singapore
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ABHIK ROYCHOUDHURY, National University of Singapore, Singapore

In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the speci�c characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen di�erently, the same fuzzers may be ranked di�erently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the speci�c properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our �rst methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
di�erent e�ects this property has on various fuzzers. However, due to the large number of properties and the di�culty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer e�ectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative e�ectiveness of fuzzers and quantify the
e�ects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically signi�cant e�ect on the relative e�ectiveness of fuzzers.
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1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for �nding security �aws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug �nding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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Benchmarking confirms effectiveness.  
What about its limits?

Top Score on the Wrong Exam: On Benchmarking in Machine
Learning for Vulnerability Detection
NIKLAS RISSE,MPI-SP, Germany
JING LIU,MPI-SP, Germany
MARCEL BÖHME,MPI-SP, Germany

According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past �ve years de�ne ML4VD as a function-level binary classi�cation problem:

Given a function, does it contain a security �aw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often �rst want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security �aw and con�rmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We �nd that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We �nd that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-de�ned and call into question the
internal validity of this growing body of work. Constructively, we call for more e�ective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: • Security and privacy! Software and application security; • Software and its engi-
neering! Software testing and debugging; • Computing methodologies!Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction
In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD de�ned and thus evaluated?
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose
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ABSTRACT
Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function 𝑓 , models trained bymachine learning techniques
can decide if 𝑓 contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Software
and its engineering→ Software testing and debugging.
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machine learning, automatic vulnerability detection, semantic pre-
serving transformations, large language models
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1 INTRODUCTION
Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16–20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used
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• What did we learn?

• Sometimes, there is no optimal measure of success.

• Even if there is a strong correlation, you cannot substitute one measure for 

another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.

Measures are specific, our claims general.

Conduct counterfactual analysis. 
Report conditions under which 
benchmark outcome changes.
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Measures are specific, our claims general.
• What did we learn?


1. There is no optimal measure.


2. You cannot substitute one measure for another  
and expect the same benchmarking outcome.


3. It’s best to report both measures.

On the Reliability of Coverage-Based Fuzzer Benchmarking
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MPI-SP, Germany

Monash University, Australia
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Google, USA

Jonathan Metzman
Google, USA

ABSTRACT
Given a program where none of our fuzzers �nds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer e�ectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
�nd that a fuzzer that covers more code also �nds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at �nding bugs.

Curiously enough, however, we �nd no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at �nding bugs.
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1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug �nding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them �nds any bugs. If indeed they don’t, we
might have some con�dence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would �nd no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of �nding bugs? A widely used proxy measure
of fuzzer e�ectiveness is the code coverage that is achieved. After
all, a fuzzer cannot �nd bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers ⇥ 24 C programs ⇥ 20 fuzzing
campaigns of 23 hours (⇡ 13 CPU years). We use three measures of
coverage and two measures of bug �nding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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(a) 1 hour fuzzing campaigns (d = 0.38).
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(b) 1 day fuzzing campaigns (d = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug �nding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly di�erent. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the di�erence in coverage and the di�erence in bug �nding are
statistically signi�cant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug �nding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the di�erences in terms of
coverage and bug �nding are statistically signi�cant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the di�erences in terms of coverage and bug �nding
is statistically signi�cant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
di�erences to be statistically signi�cant at ?  0.0001 for coverage
and bug �nding, do we �nd a strong agreement. However, statistical
signi�cance at ?  0.0001 only in terms of coverage is not su�cient;
we again �nd only weak agreement. The increase in agreement
with statistical signi�cance is not observed when we measure bug
�nding using the time-to-error. We also �nd that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties
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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the speci�c characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen di�erently, the same fuzzers may be ranked di�erently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the speci�c properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our �rst methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
di�erent e�ects this property has on various fuzzers. However, due to the large number of properties and the di�culty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer e�ectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative e�ectiveness of fuzzers and quantify the
e�ects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically signi�cant e�ect on the relative e�ectiveness of fuzzers.
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1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for �nding security �aws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug �nding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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Benchmarking confirms effectiveness.  
What about its limits?

Top Score on the Wrong Exam: On Benchmarking in Machine
Learning for Vulnerability Detection
NIKLAS RISSE,MPI-SP, Germany
JING LIU,MPI-SP, Germany
MARCEL BÖHME,MPI-SP, Germany

According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past �ve years de�ne ML4VD as a function-level binary classi�cation problem:

Given a function, does it contain a security �aw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often �rst want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security �aw and con�rmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We �nd that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We �nd that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-de�ned and call into question the
internal validity of this growing body of work. Constructively, we call for more e�ective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: • Security and privacy! Software and application security; • Software and its engi-
neering! Software testing and debugging; • Computing methodologies!Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction
In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD de�ned and thus evaluated?
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose
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ABSTRACT
Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function 𝑓 , models trained bymachine learning techniques
can decide if 𝑓 contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Software
and its engineering→ Software testing and debugging.

KEYWORDS
machine learning, automatic vulnerability detection, semantic pre-
serving transformations, large language models
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1 INTRODUCTION
Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16–20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used
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• What did we learn?

• Sometimes, there is no optimal measure of success.

• Even if there is a strong correlation, you cannot substitute one measure for 

another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.

Measures are specific, our claims general.

Conduct counterfactual analysis. 
Report conditions under which 
benchmark outcome changes.

• What did we learn?

• Your benchmarking outcome is specific to your benchmark configuration.

• Techniques might seem to perform similar on the average instance.  

Atomistic benchmarking hides the strengths of individual techniques.


• Recommendation:

• Conduct a counterfactual analysis to report the conditions under which a 

benchmark outcome changes.

Benchmarks are specific, our claims general.



Marcel Böhme 
Max Planck Institute 
for Security & Privacy 

Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

Measures are specific, our claims general.
• What did we learn?


1. There is no optimal measure.


2. You cannot substitute one measure for another  
and expect the same benchmarking outcome.


3. It’s best to report both measures.

On the Reliability of Coverage-Based Fuzzer Benchmarking
Marcel Böhme
MPI-SP, Germany

Monash University, Australia
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Google, USA

Jonathan Metzman
Google, USA

ABSTRACT
Given a program where none of our fuzzers �nds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer e�ectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
�nd that a fuzzer that covers more code also �nds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at �nding bugs.

Curiously enough, however, we �nd no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at �nding bugs.
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1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug �nding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them �nds any bugs. If indeed they don’t, we
might have some con�dence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would �nd no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of �nding bugs? A widely used proxy measure
of fuzzer e�ectiveness is the code coverage that is achieved. After
all, a fuzzer cannot �nd bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers ⇥ 24 C programs ⇥ 20 fuzzing
campaigns of 23 hours (⇡ 13 CPU years). We use three measures of
coverage and two measures of bug �nding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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(a) 1 hour fuzzing campaigns (d = 0.38).
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(b) 1 day fuzzing campaigns (d = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug �nding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly di�erent. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the di�erence in coverage and the di�erence in bug �nding are
statistically signi�cant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug �nding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the di�erences in terms of
coverage and bug �nding are statistically signi�cant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the di�erences in terms of coverage and bug �nding
is statistically signi�cant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
di�erences to be statistically signi�cant at ?  0.0001 for coverage
and bug �nding, do we �nd a strong agreement. However, statistical
signi�cance at ?  0.0001 only in terms of coverage is not su�cient;
we again �nd only weak agreement. The increase in agreement
with statistical signi�cance is not observed when we measure bug
�nding using the time-to-error. We also �nd that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties
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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the speci�c characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen di�erently, the same fuzzers may be ranked di�erently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the speci�c properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our �rst methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
di�erent e�ects this property has on various fuzzers. However, due to the large number of properties and the di�culty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer e�ectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative e�ectiveness of fuzzers and quantify the
e�ects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically signi�cant e�ect on the relative e�ectiveness of fuzzers.
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1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for �nding security �aws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug �nding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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Benchmarking confirms effectiveness.  
What about its limits?

Top Score on the Wrong Exam: On Benchmarking in Machine
Learning for Vulnerability Detection
NIKLAS RISSE,MPI-SP, Germany
JING LIU,MPI-SP, Germany
MARCEL BÖHME,MPI-SP, Germany

According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past �ve years de�ne ML4VD as a function-level binary classi�cation problem:

Given a function, does it contain a security �aw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often �rst want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security �aw and con�rmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We �nd that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We �nd that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-de�ned and call into question the
internal validity of this growing body of work. Constructively, we call for more e�ective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.

CCS Concepts: • Security and privacy! Software and application security; • Software and its engi-
neering! Software testing and debugging; • Computing methodologies!Machine learning.

Additional Key Words and Phrases: machine learning, vulnerability detection, benchmark, function, LLM,
data quality, context, spurious correlations, ML4VD, software security
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1 Introduction
In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD de�ned and thus evaluated?
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose

Detecting Overfitting of Machine Learning Techniques for
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ABSTRACT
Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function 𝑓 , models trained bymachine learning techniques
can decide if 𝑓 contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Software
and its engineering→ Software testing and debugging.

KEYWORDS
machine learning, automatic vulnerability detection, semantic pre-
serving transformations, large language models
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1 INTRODUCTION
Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16–20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used
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• What did we learn?

• Sometimes, there is no optimal measure of success.

• Even if there is a strong correlation, you cannot substitute one measure for 

another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.

Measures are specific, our claims general.

Step back and reflect if  
we are asking the right 
questions to begin with.

• What did we learn?

• Your benchmarking outcome is specific to your benchmark configuration.

• Techniques might seem to perform similar on the average instance.  

Atomistic benchmarking hides the strengths of individual techniques.


• Recommendation:

• Conduct a counterfactual analysis to report the conditions under which a 

benchmark outcome changes.

Benchmarks are specific, our claims general.



Marcel Böhme 
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Marcel Böhme, Max Planck Institute for Security and Privacy · SBFT’25 Keynote · Benchmarks Are Our Measure of Progress. Or Are They?

Measures are specific, our claims general.
• What did we learn?


1. There is no optimal measure.


2. You cannot substitute one measure for another  
and expect the same benchmarking outcome.


3. It’s best to report both measures.

On the Reliability of Coverage-Based Fuzzer Benchmarking
Marcel Böhme
MPI-SP, Germany

Monash University, Australia
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Google, USA

Jonathan Metzman
Google, USA

ABSTRACT
Given a program where none of our fuzzers �nds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer e�ectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
�nd that a fuzzer that covers more code also �nds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at �nding bugs.

Curiously enough, however, we �nd no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at �nding bugs.
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1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug �nding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them �nds any bugs. If indeed they don’t, we
might have some con�dence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would �nd no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of �nding bugs? A widely used proxy measure
of fuzzer e�ectiveness is the code coverage that is achieved. After
all, a fuzzer cannot �nd bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers ⇥ 24 C programs ⇥ 20 fuzzing
campaigns of 23 hours (⇡ 13 CPU years). We use three measures of
coverage and two measures of bug �nding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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(a) 1 hour fuzzing campaigns (d = 0.38).
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(b) 1 day fuzzing campaigns (d = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug �nding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly di�erent. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the di�erence in coverage and the di�erence in bug �nding are
statistically signi�cant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug �nding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the di�erences in terms of
coverage and bug �nding are statistically signi�cant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the di�erences in terms of coverage and bug �nding
is statistically signi�cant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
di�erences to be statistically signi�cant at ?  0.0001 for coverage
and bug �nding, do we �nd a strong agreement. However, statistical
signi�cance at ?  0.0001 only in terms of coverage is not su�cient;
we again �nd only weak agreement. The increase in agreement
with statistical signi�cance is not observed when we measure bug
�nding using the time-to-error. We also �nd that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.
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Fuzzing: On Benchmarking Outcome as a Function of Benchmark Properties
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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the speci�c characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen di�erently, the same fuzzers may be ranked di�erently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the speci�c properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our �rst methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
di�erent e�ects this property has on various fuzzers. However, due to the large number of properties and the di�culty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization
and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer e�ectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative e�ectiveness of fuzzers and quantify the
e�ects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically signi�cant e�ect on the relative e�ectiveness of fuzzers.
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1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for �nding security �aws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug �nding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers
published in the past �ve years de�ne ML4VD as a function-level binary classi�cation problem:

Given a function, does it contain a security �aw?

From our experience as security researchers, faced with deciding whether a given function makes the program
vulnerable to attacks, we would often �rst want to understand the context in which this function is called.

In this paper, we study how often this decision can really be made without further context and study both
vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function “vulnerable”
if it was involved in a patch of an actual security �aw and con�rmed to cause the program’s vulnerability. It
is “non-vulnerable” otherwise. We �nd that in almost all cases this decision cannot be made without further
context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling
context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed.

But why do ML4VD techniques achieve high scores even though there is demonstrably not enough
information in these samples? Spurious correlations: We �nd that high scores can be achieved even when
only word counts are available. This shows that these datasets can be exploited to achieve high scores without
actually detecting any security vulnerabilities.

We conclude that the prevailing problem statement of ML4VD is ill-de�ned and call into question the
internal validity of this growing body of work. Constructively, we call for more e�ective benchmarking
methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and
examine broader implications for the evaluation of machine learning and programming analysis research.
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1 Introduction
In recent years, the number of papers published on the topic of machine learning for vulnerability
detection (ML4VD) has dramatically increased. Because of this rise in popularity, the validity and
soundness of the underlying methodologies and datasets becomes increasingly important. So then,
how exactly is the problem of ML4VD de�ned and thus evaluated?
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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose
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ABSTRACT
Recent results of machine learning for automatic vulnerability de-
tection have been very promising indeed: Given only the source
code of a function 𝑓 , models trained bymachine learning techniques
can decide if 𝑓 contains a security flaw with up to 70% accuracy.

But how do we know that these results are general and not spe-
cific to the datasets? To study this question, researchers proposed
to amplify the testing set by injecting semantic preserving changes
and found that the model’s accuracy significantly drops. In other
words, the model uses some unrelated features during classifica-
tion. In order to increase the robustness of the model, researchers
proposed to train on amplified training data, and indeed model
accuracy increased to previous levels.

In this paper, we replicate and continue this investigation, and
provide an actionable model benchmarking methodology to help
researchers better evaluate advances in machine learning for vul-
nerability detection. Specifically, we propose a cross validation
algorithm, where a semantic preserving transformation is applied
during the amplification of either the training set or the testing
set. Using 11 transformations and 3 ML techniques, we find that
the improved robustness only applies to the specific transforma-
tions used during training data amplification. In other words, the
robustified models still rely on unrelated features for predicting the
vulnerabilities in the testing data.
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1 INTRODUCTION
Recently a number of different publications have reported high
scores on vulnerability detection benchmarks using machine learn-
ing (ML) techniques [1, 5–8, 14]. So, does this mean that the problem
of detecting security vulnerabilities in software is solved? How do
we know that the reported results are general and not specific to
the benchmark datasets?

To study these questions, researchers have tried to explore the
capabilities and limits of machine learning techniques in ways that
go beyond simple evaluations on benchmark testing sets. For exam-
ple, it is possible to apply small semantic preserving amplifications
to the input programs of a state-of-the-art model and then mea-
sure, whether the model changes its predictions and whether it still
performs well. Examples for such amplifications are identifier re-
naming [9, 17–20], insertion of unexecuted statements [9, 16, 18, 19]
or replacement of code elements with equivalent elements [3, 10].
The impact of applying semantic preserving amplifications to test-
ing data has been explored for many different tasks in software
engineering, and the results seems to be clear: Machine learning
techniques lack robustness against semantic preserving amplifica-
tions [3, 4, 9, 11, 15–20].

A common strategy to address the robustness problem is train-
ing data amplification; applying the same or similar amplifications
to the training dataset. Many of the works that reported the lack
of robustness of ML models when trained on unamplified data
also investigated training data amplification using their respective
methods [4, 9, 11, 16–20]. They found a restoration or at least im-
provement towards the initial high performance. But does training
data amplification actually improve the ability of these models to
detect vulnerabilities, or are they just overfitting to a different set
of data?

We contribute to answering this question by proposing a gen-
eral benchmarking methodology that can be used to evaluate the
capabilities of machine learning models for vulnerability detection
by using data amplification. The core of the methodology is a cross
validation, in which a selected semantic preserving amplification
method is applied to the training dataset of a model, and a different
amplification method is applied to the testing dataset (see Figure 1).
When repeated for all possible pairs out of a set of amplification
methods, the resulting scores provide a measure of overfitting to
the specific semantic preserving amplification methods that were
used during training data amplification.

In addition to the general methodology, we present the results of
an empirical study, in which we apply the proposed methodology
to three state-of-the-art ML techniques for vulnerability detection.
We implemented 11 different semantic preserving amplification
methods and tried to cover types of amplifications commonly used
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• What did we learn?

• Sometimes, there is no optimal measure of success.

• Even if there is a strong correlation, you cannot substitute one measure for 

another and expect the same benchmarking outcome.


• Recommendation:

• Triangulate effectiveness using different measures of success.

• Unless there is agreement between two measures, report both measures.

Measures are specific, our claims general.

Step back and reflect if  
we are asking the right 
questions to begin with.

• What did we learn?

• Your benchmarking outcome is specific to your benchmark configuration.

• Techniques might seem to perform similar on the average instance.  

Atomistic benchmarking hides the strengths of individual techniques.


• Recommendation:

• Conduct a counterfactual analysis to report the conditions under which a 

benchmark outcome changes.

Benchmarks are specific, our claims general.

• What did we learn?

• We use benchmarking to learn how well a technique solves the problem, 

but an entire field can beat benchmarks without solving the problem.

• For ML techniques, we must tackle the problem of spurious correlations 

before we can consider benchmark outcomes as trustworthy.


• Recommendation:

• When benchmarking your technique, don’t blindly trust the numbers.  

Step back and reflect if you are asking the right questions to begin with.

Top Score on the Wrong Exam
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• Benchmarking to measure progress in all of automation.

• Automated Software Engineering: SWE-Bench, Defects4J, CoREBench.

• Automated Cybersecurity: DARPA CGC, AIxCC (8.5 million USD in prizes)


• Machine Learning / Artificial Intelligence: 

• ARC Challenge (1+ million USD in prizes).

• Most ML/AI conferences have a track to announce new benchmarks.

• Every announcement of a new LLM comes with results on popular benchmarks.

Benchmarks induce progress.
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